دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Boris Moiseevich Levitan. Vasiliĭ Vasilʹevich Zhikov
سری:
ISBN (شابک) : 0521244072, 9780521244077
ناشر: Cambridge University Press
سال نشر: 1982
تعداد صفحات: 226
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Almost Periodic Functions and Differential Equations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تقریباً توابع دوره ای و معادلات دیفرانسیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface ix 1. Almost periodic functions in metric spaces 1 1.1. Definition and elementary properties of almost periodic functions 1 1.2. Bochner\'s criterion 4 1.3. The connection with stable dynamical systems 8 1.4. Recurrence 9 1.5. A theorem of A. A. Markov 10 1.6. Some simple properties of trajectories 11 Comments and references to the literature 12 2. Harmonic analysis of almost periodic functions 14 2.1. Prerequisites about Fourier-Stieltjes integrals 14 2.2. Proof of the approximation theorem 17 2.3. The mean-value theorem; the Bohr transformation; Fourier series; the uniqueness theorem 21 2.4. Bochner-Fejer polynomials 25 2.5. Almost periodic functions with values in a Hilbert space; Parseval\'s relation 31 2.6. The almost periodic functions of Stepanov 33 Comments and references to the literature 36 3. Arithmetic properties of almost periods 37 3.1. Kronecker\'s theorem 37 3.2. The connection between the Fourier exponents of a function and its almost periods 40 3.3. Limit-periodic functions 45 3.4. Theorem of the argument for continuous numerical complex-valued almost periodic functions 48 Comments and references to the literature 51 4. Generalisation of the uniqueness theorem ($N$-almost periodic functions) 53 4.1. Introductory remarks, definition and simplest properties of N-almost periodic functions 53 4.2. Fourier series, the approximation theorem, and the uniqueness theorem 59 Comments and references to the literature 62 5. Weakly almost periodic functions 64 5.1. Definition and elementary properties of weakly almost periodic functions 64 5.2. Harmonic analysis of weakly almost periodic functions 68 5.3. Criteria for almost periodicity 70 Comments and references to the literature 76 6. A theorem concerning the integral and certain questions of harmonic analysis 77 6.1. The Bohl-Bohr-Amerio theorem 77 6.2. Further theorems concerning the integral 81 6.3. Information from harmonic analysis 87 6.4. A spectral condition for almost periodicity 91 6.5. Harmonic analysis of bounded solutions of linear equations 92 Comments and references to the literature 96 7. Stability in the sense of Lyapunov and almost periodicity 98 Notation 98 7.1. The separation properties 98 7.2. A lemma about separation 101 7.3. Corollaries of the separation lemma 105 7.4. Corollaries of the separation lemma (continued) 107 7.5. A theorem about almost periodic trajectories 109 7.6. Proof of the theorem about a zero-dimensional fibre 113 7.7. Statement of the principle of the stationary point 116 7.8. Realisation of the principle of the stationary point when the dimension $m\\leq3$ 117 7.9. Realisation of the principle of the stationary point under monotonicity conditions 121 Comments and references to the literature 123 8. Favard theory 124 8.1. Introduction 124 8.2. Weak almost periodicity (the case of a uniformly convex space) 127 8.3. Certain auxiliary questions 130 8.4. Weak almost periodicity (the general case) 134 8.5. Problems of compactness and almost periodicity 135 8.6. Weakening of the stability conditions 140 8.7. On solvability in the Besicovitch class 142 Comments and references to the literature 147 9. The method of monotonic operators 149 9.1. General properties of monotonic operators 149 9.2. Solvability of the Cauchy problem for an evolution equation 153 9.3. The evolution equation on the entire line: questions of the boundedness and the compactness of solutions 157 9.4. Almost periodic solutions of the evolution equation 161 Comments and references to the literature 165 10. Linear equations in a Banach space (questions of admissibility and dichotomy) 166 Notation 166 10.1. Preliminary results 166 10.2. The connection between regularity and the exponential dichotomy on the whole line 170 10.3. Theorems on regularity 172 10.4. Examples 176 Comments and references to the literature 181 11. The averaging principle on the whole line for parabolic equations 182 11.1. Bogolyubov\'s lemma 182 11.2. Some properties of parabolic operators 183 11.3. The linear problem about averaging 186 11.4. A non-linear equation 189 11.5. The Navier-Stokes equation 193 11.6. The problem on the whole space 195 Comments and references to the literature 199 Bibliography 200 Index 208