دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Thomas A. Garrity
سری:
ISBN (شابک) : 9781316518403, 9781009009195
ناشر: Cambridge University Press
سال نشر: 2021
تعداد صفحات: 417
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب All the Math You Missed: But Need to Know for Graduate School به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب همه ریاضیاتی که از دست داده اید: اما برای تحصیلات تکمیلی باید بدانید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
انتظار می رود که دانشجویان فارغ التحصیل مبتدی در علوم ریاضی و حوزه های مرتبط در علوم فیزیکی و کامپیوتر و مهندسی با گستره دلهره آور ریاضیات آشنا باشند، اما تعداد کمی از آنها چنین پیشینه ای دارند. این کتاب پرفروش به دانش آموزان کمک می کند تا شکاف های دانش خود را پر کنند. توماس آ. گاریتی با تأکید بر شهود پشت موضوع، نکات اساسی و چند نتیجه کلیدی از مهمترین موضوعات کارشناسی ریاضی را توضیح می دهد. توضیحات با مثالها، تمرینها و پیشنهادهای متعددی برای مطالعه بیشتر همراه است که به خواننده امکان میدهد درک خود را از این موضوعات اصلی آزمایش و توسعه دهد. با چهار فصل جدید و بسیاری پیشرفتهای دیگر، این ویرایش دوم همه ریاضیاتی که از دست دادید، یک منبع ضروری برای دانشجویان پیشرفته و دانشجویان مقطع کارشناسی ارشد است که نیاز به یادگیری سریع ریاضیات جدی دارند.
Beginning graduate students in mathematical sciences and related areas in physical and computer sciences and engineering are expected to be familiar with a daunting breadth of mathematics, but few have such a background. This bestselling book helps students fill in the gaps in their knowledge. Thomas A. Garrity explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The explanations are accompanied by numerous examples, exercises and suggestions for further reading that allow the reader to test and develop their understanding of these core topics. Featuring four new chapters and many other improvements, this second edition of All the Math You Missed is an essential resource for advanced undergraduates and beginning graduate students who need to learn some serious mathematics quickly.
Contents Preface On the Structure of Mathematics Equivalence Problems The Study of Functions Equivalence Problems in Physics Brief Summaries of Topics 0.1 Linear Algebra 0.2 Real Analysis 0.3 Differentiating Vector-Valued Functions 0.4 Point Set Topology 0.5 Classical Stokes’ Theorems 0.6 Differential Forms and Stokes’ Theorem 0.7 Curvature for Curves and Surfaces 0.8 Geometry 0.9 Countability and the Axiom of Choice 0.10 Elementary Number Theory 0.11 Algebra 0.12 Algebraic Number Theory 0.13 Complex Analysis 0.14 Analytic Number Theory 0.15 Lebesgue Integration 0.16 Fourier Analysis 0.17 Differential Equations 0.18 Combinatorics and Probability Theory 0.19 Algorithms 0.20 Category Theory Chapter 1: Linear Algebra 1.1 Introduction 1.2 The Basic Vector Space Rn 1.3 Vector Spaces and Linear Transformations 1.4 Bases, Dimension, and Linear Transformations as Matrices 1.5 The Determinant 1.6 The Key Theorem of Linear Algebra 1.7 Similar Matrices 1.8 Eigenvalues and Eigenvectors 1.9 Dual Vector Spaces 1.10 Books Exercises Chapter 2: ϵ and δ Real Analysis 2.1 Limits 2.2 Continuity 2.3 Differentiation 2.4 Integration 2.5 The Fundamental Theorem of Calculus 2.6 Pointwise Convergence of Functions 2.7 Uniform Convergence 2.8 The Weierstrass M-Test 2.9 Weierstrass’ Example 2.10 Books Exercises Chapter 3: Calculus for Vector-Valued Functions 3.1 Vector-Valued Functions 3.2 Limits and Continuity of Vector-Valued Functions 3.3 Differentiation and Jacobians 3.4 The Inverse Function Theorem 3.5 The Implicit Function Theorem 3.6 Books Exercises Chapter 4: Point Set Topology 4.1 Basic Definitions 4.2 The Standard Topology on Rn 4.3 Metric Spaces 4.4 Bases for Topologies 4.5 Zariski Topology of Commutative Rings 4.6 Books Exercises Chapter 5: Classical Stokes’ Theorems 5.1 Preliminaries about Vector Calculus 5.1.1 Vector Fields 5.1.2 Manifolds and Boundaries 5.1.3 Path Integrals 5.1.4 Surface Integrals 5.1.5 The Gradient 5.1.6 The Divergence 5.1.7 The Curl 5.1.8 Orientability 5.2 The Divergence Theorem and Stokes’ Theorem 5.3 A Physical Interpretation of the Divergence Theorem 5.4 A Physical Interpretation of Stokes’ Theorem 5.5 Sketch of a Proof of the Divergence Theorem 5.6 Sketch of a Proof of Stokes’ Theorem 5.7 Books Exercises Chapter 6: Differential Forms and Stokes’ Theorem 6.1 Volumes of Parallelepipeds 6.2 Differential Forms and the Exterior Derivative 6.2.1 Elementary k-Forms 6.2.2 The Vector Space of k-Forms 6.2.3 Rules for Manipulating k-Forms 6.2.4 Differential k-Forms and the Exterior Derivative 6.3 Differential Forms and Vector Fields 6.4 Manifolds 6.5 Tangent Spaces and Orientations 6.5.1 Tangent Spaces for Implicit and Parametric Manifolds 6.5.2 Tangent Spaces for Abstract Manifolds 6.5.3 Orientation of a Vector Space 6.5.4 Orientation of a Manifold and Its Boundary 6.6 Integration on Manifolds 6.7 Stokes’ Theorem 6.8 Books Exercises Chapter 7: Curvature for Curves and Surfaces 7.1 Plane Curves 7.2 Space Curves 7.3 Surfaces 7.4 The Gauss–Bonnet Theorem 7.5 Books Exercises Chapter 8: Geometry 8.1 Euclidean Geometry 8.2 Hyperbolic Geometry 8.3 Elliptic Geometry 8.4 Curvature 8.5 Books Exercises Chapter 9: Countability and the Axiom of Choice 9.1 Countability 9.2 Naive Set Theory and Paradoxes 9.3 The Axiom of Choice 9.4 Non-measurable Sets 9.5 Gödel and Independence Proofs 9.6 Books Exercises Chapter 10: Elementary Number Theory 10.1 Types of Numbers 10.2 Prime Numbers 10.3 The Division Algorithm and the Euclidean Algorithm 10.4 Modular Arithmetic 10.5 Diophantine Equations 10.6 Pythagorean Triples 10.7 Continued Fractions 10.8 Books Exercises Chapter 11: Algebra 11.1 Groups 11.2 Representation Theory 11.3 Rings 11.4 Fields and Galois Theory 11.5 Books Exercises Chapter 12: Algebraic Number Theory 12.1 Algebraic Number Fields 12.2 Algebraic Integers 12.3 Units 12.4 Primes and Problems with Unique Factorization 12.5 Books Exercises Chapter 13: Complex Analysis 13.1 Analyticity as a Limit 13.2 Cauchy–Riemann Equations 13.3 Integral Representations of Functions 13.4 Analytic Functions as Power Series 13.5 Conformal Maps 13.6 The Riemann Mapping Theorem 13.7 Several Complex Variables: Hartog’s Theorem 13.8 Books Exercises Chapter 14: Analytic Number Theory 14.1 The Riemann Zeta Function 14.2 Riemann’s Insight 14.3 The Gamma Function 14.4 The Functional Equation: A Hidden Symmetry 14.5 Linking π(x) with the Zeros of ζ(s) 14.6 Books Exercises Chapter 15: Lebesgue Integration 15.1 Lebesgue Measure 15.2 The Cantor Set 15.3 Lebesgue Integration 15.4 Convergence Theorems 15.5 Books Exercises Chapter 16: Fourier Analysis 16.1 Waves, Periodic Functions and Trigonometry 16.2 Fourier Series 16.3 Convergence Issues 16.4 Fourier Integrals and Transforms 16.5 Solving Differential Equations 16.6 Books Exercises Chapter 17: Differential Equations 17.1 Basics 17.2 Ordinary Differential Equations 17.3 The Laplacian 17.3.1 Mean Value Principle 17.3.2 Separation of Variables 17.3.3 Applications to Complex Analysis 17.4 The Heat Equation 17.5 The Wave Equation 17.5.1 Derivation 17.5.2 Change of Variables 17.6 The Failure of Solutions: Integrability Conditions 17.7 Lewy’s Example 17.8 Books Exercises Chapter 18: Combinatorics and Probability Theory 18.1 Counting 18.2 Basic Probability Theory 18.3 Independence 18.4 Expected Values and Variance 18.5 Central Limit Theorem 18.6 Stirling’s Approximation for n! 18.7 Books Exercises Chapter 19: Algorithms 19.1 Algorithms and Complexity 19.2 Graphs: Euler and Hamiltonian Circuits 19.3 Sorting and Trees 19.4 P=NP? 19.5 Numerical Analysis: Newton’s Method 19.6 Books Exercises Chapter 20: Category Theory 20.1 The Basic Definitions 20.2 Examples 20.3 Functors 20.3.1 Link with Equivalence Problems 20.3.2 Definition of Functor 20.3.3 Examples of Functors 20.4 Natural Transformations 20.5 Adjoints 20.6 “There Exists” and “For All” as Adjoints 20.7 Yoneda Lemma 20.8 Arrow, Arrows, Arrows Everywhere 20.9 Books Exercises Appendix: Equivalence Relations Exercises Bibliography Index