دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Tero Luukkonen سری: Woodhead Publishing Series in Civil and Structural Engineering ISBN (شابک) : 0323884385, 9780323884389 ناشر: Woodhead Publishing سال نشر: 2022 تعداد صفحات: 432 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 مگابایت
در صورت تبدیل فایل کتاب Alkali-Activated Materials in Environmental Technology Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد فعال شده با قلیایی در کاربردهای فناوری محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Alkali-Activated Materials in Environmental Technology Applications Copyright Contents List of contributors Preface 1 Alkali-activated materials in environmental technology: introduction 1.1 Scope of this book 1.2 Definition of the key terminology 1.3 The origins of alkali-activated materials 1.4 Beyond construction materials 1.5 Summary References 2 Chemistry and materials science of alkali-activated materials 2.1 Fundamental chemistry 2.1.1 Reactivity in alkaline media 2.1.2 Low CaO-content aluminosilicate sources 2.1.3 High CaO-content aluminosilicate sources 2.1.4 Moderate CaO-content aluminosilicate sources 2.2 Structural models 2.2.1 Structural models for C-S-H gel 2.2.2 Structural models for N-A-S-H gel 2.3 Concluding remarks References 3 Geopolymeric nanomaterials 3.1 Introduction 3.2 Primer of geopolymer chemistry for syntheses of geopolymeric nanomaterials 3.2.1 Geopolymerization reaction 3.2.2 Geopolymerization as “top-down” synthetic process 3.2.3 Geopolymer—an innately “nanostructured” material 3.3 Examples of geopolymer nanomaterial synthesis and applications 3.3.1 Synthesis and applications of nanoporous geopolymer with meso- and macropores 3.3.1.1 Synthesis 3.3.1.2 Arsenic removal from ground water 3.3.1.3 Catalysts for biodiesel production 3.3.2 Exploration of geopolymer chemistry for small particle production and applications 3.3.2.1 Synthesis 3.3.2.2 Antimicrobial application 3.3.2.3 Bacterial toxin removal in therapeutic application 3.3.2.4 Energy-saving multifunctional hybrid additives in asphalt 3.4 Concluding remarks References 4 Highly porous alkali-activated materials 4.1 Introduction 4.2 Material porosity 4.3 Effect of composition and synthesis conditions 4.3.1 In situ zeolite formation 4.4 Micro- and mesoporous filler addition 4.5 Process induced porosity 4.6 Direct foaming 4.7 Templating agents 4.8 Additive manufacturing 4.9 Summary and conclusions References 5 Granulation techniques of geopolymers and alkali-activated materials 5.1 Introduction 5.2 Granulation techniques 5.2.1 Wet granulation 5.2.2 Fluidized bed granulation 5.3 Granulation of alkaline-activated materials 5.3.1 High shear granulation and heat formation 5.3.2 Suspension dispersion solidification method and foaming 5.4 Properties of granules 5.5 Utilization of geopolymer granules 5.5.1 As adsorbents in wastewater treatment 5.6 Other applications 5.7 Conclusions References 6 Surface chemistry of alkali-activated materials and how to modify it 6.1 Introduction 6.2 Surface characteristics and properties of alkali-activated materials 6.2.1 Nuclear magnetic resonance spectroscopy 6.2.2 Infrared spectroscopy 6.2.3 Raman spectroscopy 6.2.4 X-ray photoelectron spectroscopy 6.2.5 Surface charge properties 6.2.6 Specific surface area and nanometer-scale porosity 6.2.7 Other analytical techniques 6.3 Modification methods of alkali-activated materials 6.3.1 Surface modification with organosilicon compounds 6.3.2 Surface esterification 6.3.3 Acid or base treatment 6.3.4 Ion exchange 6.3.5 Composite materials 6.3.6 Conversion into zeolites 6.4 Conclusions References 7 Alkali-activated materials as adsorbents for water and wastewater treatment 7.1 Introduction 7.2 Occurring trends in scientific literature 7.3 Different strategies to use alkali-activated materials as adsorbents 7.4 Water pollutants removed by alkali-activated materials 7.5 Adsorption of heavy metals by AAMs 7.6 Adsorption of dyes by AAMs 7.7 Adsorption of other water pollutants by AAMs 7.8 Regeneration after sorption 7.9 Bridging the gap between bench-scale studies and pilot-scale trials 7.10 Performance comparison with benchmark materials 7.11 Conclusions and future trends Acknowledgments References 8 Alkali-activated materials as photocatalysts for aqueous pollutant degradation 8.1 Introduction 8.2 Alkali-activated materials and geopolymers 8.3 Geopolymer-based photocatalysts 8.3.1 Supported geopolymer-based heterogeneous photocatalysts 8.3.1.1 TiO2-supported geopolymer based photocatalysts 8.3.1.2 Photocatalysts based on other catalytically active metal oxides supported on geopolymer substrates 8.3.2 Geopolymer composites as photocatalysts 8.3.3 Alkali-activated materials as photocatalysts 8.4 Concluding remarks 8.4.1 Summary of the chapter 8.4.2 Shortcomings of the reported literature 8.4.3 Prospects for the future development of these photocatalysts References 9 Alkali-activated membranes and membrane supports 9.1 Introduction 9.2 Ceramic materials in membrane technology 9.3 Alkali-activated materials as membranes 9.3.1 Preparation of alkali-activated membranes 9.3.2 Properties and applications of alkali-activated membranes 9.4 Conversion of alkali-activated membranes into zeolites 9.5 Conclusions References 10 Alkali-activated materials in passive pH control of wastewater treatment and anaerobic digestion 10.1 Introduction 10.2 Reasons for high pH in the pore solutions of alkali-activated materials 10.3 Utilization prospects for alkali-activated materials in pH control 10.3.1 Anaerobic digestion 10.3.2 Nitrification 10.3.3 Acid mine drainage 10.3.4 Preparation of alkali-activated materials for pH control applications 10.4 Properties of alkali-activated pH control materials 10.5 Conclusion References 11 Alkali-activated materials for catalytic air pollution control 11.1 Introduction 11.1.1 Geopolymer features 11.2 Photocatalysis in air pollution control context 11.3 Use of geopolymer structure as adsorbent and incorporation of transition metals 11.3.1 Generation of active sites within the structure 11.3.2 Dispersion of oxides by ion exchange 11.3.3 Deposition and impregnation of other catalytic species 11.4 Self-cleaning materials 11.4.1 Self-cleaning testing 11.5 Summaries on the reported cases studies and practical considerations 11.6 Conclusion References 12 Adsorption of gaseous pollutants by alkali-activated materials 12.1 Air emissions 12.1.1 CO2 emission and capture 12.2 Alkali-activated materials as potential adsorbents 12.2.1 Geopolymers as CO2 adsorbents 12.2.2 Geopolymer composites for CO2 adsorption 12.2.2.1 Geopolymer composites: addition or nucleation of zeolites for CO2 adsorbents at low temperature 12.2.2.2 Geopolymer composites: addition of hydrotalcites for CO2 adsorbents at intermediate temperature 12.3 Alternative use and activation of fly ashes for the removal of gaseous pollutants 12.4 Conclusions and future challenges References 13 Solidification/stabilization of hazardous wastes by alkali activation 13.1 Introduction 13.2 Chemistry of solidification/stabilization of heavy metals in alkali-activated materials 13.2.1 Speciation of cationic heavy metals in alkali-activated materials 13.2.2 Speciation of oxyanionic heavy metals in alkali-activated materials 13.2.3 Proposed mechanisms of heavy metal immobilization in geopolymer 13.2.3.1 Charge balancing of Al tetrahedra 13.2.3.2 Precipitation mechanism 13.2.3.3 Covalent bonding mechanism 13.2.3.4 Physical encapsulation mechanism 13.3 Stabilization/solidification of real wastes 13.3.1 Municipal waste 13.3.1.1 Ashes from municipal solid waste incineration 13.3.1.2 Waste from sewage sludge incineration 13.3.2 Industrial waste 13.3.2.1 Ash from coal and biomass power plants 13.3.2.2 Mining tailings and wastes Gold mine tailings Zinc and copper-zinc mine tailings Chromite ore processing residue 13.3.2.3 Smelting slags and metallurgical wastes Lead/zinc slags Antimony, ferrochrome, ferronickel, and lithium slags 13.3.2.4 Electroplating sludge 13.3.2.5 Tannery sludge 13.3.2.6 Red mud 13.3.3 Other wastes 13.4 Effect of alkaline activator 13.5 Effect of Si/Al ratio 13.6 Effect of metal dose 13.7 Effect of sulfide 13.8 Effect of calcium 13.9 Effect of aging and kinetics of leaching 13.10 pH of leaching solution 13.11 Sequential extraction 13.12 Comparison with Portland cement 13.13 Conclusions Abbreviations References 14 In situ sediment remediation with alkali-activated materials 14.1 Introduction 14.2 Factors affecting pollutant release from the sediment 14.3 Remediation of contaminated sediments 14.4 Alkali-activated materials: a brief introduction 14.5 Alkali-activated materials as active caps or sediment amendment 14.6 Conclusions References 15 Antimicrobial alkali-activated materials 15.1 Introduction 15.2 Some material solutions against bacteria 15.3 A state-of-the-art on antimicrobial alkali-activated materials 15.4 A facile manufacturing, efficient formulations, and evaluation for antibacterial alkali-activated materials 15.4.1 Raw materials for the hosting matrix 15.4.2 Antibacterial agents 15.4.3 Manufacturing process 15.4.4 Measuring the antibacterial efficiency of alkali-activated materials 15.4.4.1 Preparation of culture medium and susceptibility testing 15.4.4.2 The halo method to determine the antibacterial efficiency 15.4.5 Microstructural characterization and activity evaluation against Escherichia coli and Staphylococcus aureus using si... 15.4.6 Activity evaluation against Escherichia coli and Staphylococcus aureus using copper oxide as an antibacterial agent 15.4.7 Activity evaluation against Escherichia coli and Staphylococcus aureus using triclosan as an antibacterial agent 15.4.8 Antibacterial efficiency of 6-year-old alkali-activated materials 15.4.9 Important highlights to consider on the antibacterial alkali-activated material formulations 15.5 Comments and future opportunities on antimicrobial alkali-activated materials Acknowledgments References 16 Alkali-activated materials as catalysts in chemical processes 16.1 Introduction 16.2 Synthesis of geopolymer catalysts 16.2.1 Geopolymers as supports for other catalytically active species 16.2.2 Geopolymer composites 16.3 Applications of geopolymer catalysts in chemical processes 16.3.1 Geopolymers as solid acid catalysts 16.3.1.1 Beckmann rearrangement reactions 16.3.1.2 Friedel–Crafts aromatic alkylation reactions 16.3.1.3 Friedel–Crafts acylation reactions 16.3.2 Geopolymers as solid base catalysts 16.3.3 Geopolymers as redox catalysts 16.3.4 Geopolymer-based catalysts for other chemical processes 16.4 Concluding remarks References 17 Environmental performance of alkali-activated materials in environmental technology applications 17.1 Introduction 17.2 Environmental performance of alkali-activated materials 17.2.1 Environmental performance of alkali-activated materials as binders in concrete products 17.2.2 Environmental performance of alkali activated materials application for thermal stability and insulation 17.2.3 Environmental performance of alkali activated materials application in waste treatment 17.3 Conclusions References 18 Drivers and barriers for productization of alkali-activated materials in environmental technology 18.1 Introduction 18.2 General technical description of adsorption processes and cost structure in water or wastewater treatment 18.3 Pathway of productizing a new adsorbent 18.4 Legislation and standards 18.4.1 Waste regulation 18.4.2 REACH regulation 18.4.3 Regulation-related water and wastewater treatment 18.5 Conclusions References Index