دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Second ed.] نویسندگان: Stefano Tomasin, Nevio Benvenuto, Giovanni Cherubini سری: ISBN (شابک) : 9781119567974, 111956798X ناشر: سال نشر: 2020 تعداد صفحات: [961] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب Algorithms for communications systems and their applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگوریتم های سیستم های ارتباطی و کاربردهای آنها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این ویرایش دوم خوش آمدگویی به نسخه اصلی 2002، روشهای منطقی حسابی یا محاسباتی را در سیستمهای ارتباطی ارائه میکند که حل مشکلات مختلف را تضمین میکند. نویسندگان به طور جامع عناصر نظری را که در زمینه الگوریتمهای سیستمهای ارتباطی قرار دارند، معرفی میکنند. سپس کاربردهای مختلف این الگوریتم ها با تمرکز بر فناوری های دسترسی به شبکه سیمی و بی سیم نشان داده شده است. برنامه های به روز شده بر روی استانداردهای 5G تمرکز خواهند کرد و مواد جدید شامل سیستم های MIMO (کدگذاری بلوک فضا-زمان / مالتی پلکس فضایی / شکل دهی پرتو و مدیریت تداخل / تخمین کانال / مدل میلی متر موج) خواهد بود. OFDM و SC-FDMA (همگام سازی / تخصیص منابع (بارگذاری بیت و توان) / OFDM فیلتر شده)؛ سیستم های دوبلکس کامل (تکنیک های لغو تداخل دیجیتال).
This welcome second edition to the 2002 original presents the logical arithmetical or computational procedures within communications systems that will ensure the solution to various problems. The authors comprehensively introduce the theoretical elements which are at the basis of the field of algorithms for communications systems. Various applications of these algorithms are then illustrated with a focus on wired and wireless network access technologies. The updated applications will focus on 5G standards, and new material will include MIMO systems (Space-time block coding / Spatial multiplexing / Beamforming and interference management / Channel Estimation /mmWave Model); OFDM and SC-FDMA (Synchronization / Resource allocation (bit and power loading) / Filtered OFDM); Full Duplex Systems (Digital interference cancellation techniques).
Cover Title Page Copyright Contents Preface Acknowledgements Chapter 1 Elements of signal theory 1.1 Continuous‐time linear systems 1.2 Discrete‐time linear systems Discrete Fourier transform The DFT operator Circular and linear convolution via DFT Convolution by the overlap-save method IIR and FIR filters 1.3 Signal bandwidth The sampling theorem Heaviside conditions for the absence of signal distortion 1.4 Passband signals and systems Complex representation Relation between a signal and its complex representation Baseband equivalent of a transformation Envelope and instantaneous phase and 1.5 Second‐order analysis of random processes 1.5.1 Correlation Properties of the autocorrelation function 1.5.2 Power spectral density Spectral lines in the PSD Cross power spectral density Properties of the PSD PSD through 1.5.3 PSD of discrete‐time random processes Spectral lines in the PSD PSD through filtering Minimum-phase spectral factorization 1.5.4 PSD of passband processes PSD of in-phase and quadrature components Cyclostationary processes 1.6 The autocorrelation matrix Properties Eigenvalues Other properties Eigenvalue analysis for Hermitian matrices 1.7 Examples of random processes 1.8 Matched filter White noise case 1.9 Ergodic random processes 1.9.1 Mean value estimators Rectangular window Exponential filter General window 1.9.2 Correlation estimators Unbiased estimate Biased estimate 1.9.3 Power spectral density estimators Periodogram or instantaneous spectrum Welch periodogram Blackman and Tukey correlogram Windowing and window closing 1.10 Parametric models of random processes ARMA MA AR Spectral factorization of AR models Whitening filter Relation between ARMA, MA, and AR models 1.10.1 Autocorrelation of AR processes 1.10.2 Spectral estimation of an AR process Some useful relations AR model of sinusoidal processes 1.11 Guide to the bibliography Bibliography Appendix 1.A Multirate systems 1.A.1 Fundamentals 1.A.2 Decimation 1.A.3 Interpolation 1.A.4 Decimator filter 1.A.5 Interpolator filter 1.A.6 Rate conversion 1.A.7 Time interpolation Linear interpolation Quadratic interpolation 1.A.8 The noble identities 1.A.9 The polyphase representation Efficient implementations 1.B Generation of a complex Gaussian noise 1.C Pseudo‐noise sequences Maximal-length CAZAC Gold Chapter 2 The Wiener filter 2.1 The Wiener filter Matrix formulation Optimum filter design The principle of orthogonality Expression of the minimum mean-square error Characterization of the cost function surface The Wiener filter in the z-domain 2.2 Linear prediction Forward linear predictor Optimum predictor coefficients Forward prediction error filter Relation between linear prediction and AR models First- and second-order solutions 2.3 The least squares method Data windowing Matrix formulation Correlation matrix Determination of the optimum filter coefficients 2.3.1 The principle of orthogonality Minimum cost function The normal equation using the data matrix Geometric interpretation: the projection operator 2.3.2 Solutions to the LS problem Singular value decomposition Minimum norm solution 2.4 The estimation problem Estimation of a random variable MMSE estimation Extension to multiple observations Linear MMSE estimation of a random variable Linear MMSE estimation of a random vector 2.4.1 The Cramér–Rao lower bound Extension to vector parameter 2.5 Examples of application 2.5.1 Identification of a linear discrete‐time system 2.5.2 Identification of a continuous‐time system 2.5.3 Cancellation of an interfering signal 2.5.4 Cancellation of a sinusoidal interferer with known frequency 2.5.5 Echo cancellation in digital subscriber loops 2.5.6 Cancellation of a periodic interferer Bibliography Appendix 2.A The Levinson–Durbin algorithm Lattice filters The Delsarte–Genin algorithm Chapter 3 Adaptive transversal filters 3.1 The MSE design criterion 3.1.1 The steepest descent or gradient algorithm Stability Conditions for convergence Adaptation gain Transient behaviour of the MSE 3.1.2 The least mean square algorithm Implementation Computational complexity Conditions for convergence 3.1.3 Convergence analysis of the LMS algorithm Convergence of the mean Convergence in the mean-square sense: real scalar case Convergence in the mean-square sense: general case Fundamental results Observations Final remarks 3.1.4 Other versions of the LMS algorithm Leaky LMS Sign algorithm Normalized LMS Variable adaptation gain 3.1.5 Example of application: the predictor 3.2 The recursive least squares algorithm Normal equation Derivation Initialization Recursive form of the minimum cost function Convergence Computational complexity Example of application: the predictor 3.3 Fast recursive algorithms 3.3.1 Comparison of the various algorithms 3.4 Examples of application 3.4.1 Identification of a linear discrete‐time system Finite alphabet case 3.4.2 Cancellation of a sinusoidal interferer with known frequency Bibliography Chapter 4 Transmission channels 4.1 Radio channel 4.1.1 Propagation and used frequencies in radio transmission Basic propagation mechanisms Frequency ranges 4.1.2 Analog front‐end architectures Radiation masks Conventional superheterodyne receiver Alternative architectures Direct conversion receiver Single conversion to low-IF Double conversion and wideband IF 4.1.3 General channel model High power amplifier Transmission medium Additive noise Phase noise 4.1.4 Narrowband radio channel model Equivalent circuit at the receiver Multipath Path loss as a function of distance 4.1.5 Fading effects in propagation models Macroscopic fading or shadowing Microscopic fading 4.1.6 Doppler shift 4.1.7 Wideband channel model Multipath channel parameters Statistical description of fading channels 4.1.8 Channel statistics Power delay profile Coherence bandwidth Doppler spectrum Coherence time Doppler spectrum models Power angular spectrum Coherence distance On fading 4.1.9 Discrete‐time model for fading channels Generation of a process with a pre-assigned spectrum 4.1.10 Discrete‐space model of shadowing 4.1.11 Multiantenna systems Line of sight Discrete-time model Small number of scatterers Large number of scatterers 4.2 Telephone channel 4.2.1 Distortion 4.2.2 Noise sources Quantization noise: Thermal noise: 4.2.3 Echo Bibliography Appendix 4.A Discrete‐time NB model for mmWave channels 4.A.1 Angular domain representation Chapter 5 Vector quantization 5.1 Basic concept 5.2 Characterization of VQ Parameters determining VQ performance Comparison between VQ and scalar quantization 5.3 Optimum quantization Generalized Lloyd algorithm 5.4 The Linde, Buzo, and Gray algorithm 5.4.1 k‐means clustering Choice of the initial codebook Splitting procedure Selection of the training sequence 5.5 Variants of VQ Tree search VQ Multistage VQ Product code VQ 5.6 VQ of channel state information MISO channel quantization Channel feedback with feedforward information 5.7 Principal component analysis 5.7.1 PCA and k‐means clustering Bibliography Chapter 6 Digital transmission model and channel capacity 6.1 Digital transmission model 6.2 Detection 6.2.1 Optimum detection ML MAP 6.2.2 Soft detection LLRs associated to bits of BMAP Simplified expressions 6.2.3 Receiver strategies 6.3 Relevant parameters of the digital transmission model Relations among parameters 6.4 Error probability 6.5 Capacity 6.5.1 Discrete‐time AWGN channel 6.5.2 SISO narrowband AWGN channel Channel gain 6.5.3 SISO dispersive AGN channel 6.5.4 MIMO discrete‐time NB AWGN channel Continuous-time model MIMO dispersive channel 6.6 Achievable rates of modulations in AWGN channels 6.6.1 Rate as a function of the SNR per dimension 6.6.2 Coding strategies depending on the signal‐to‐noise ratio Coding gain 6.6.3 Achievable rate of an AWGN channel using PAM Bibliography Appendix 6.A Gray labelling Appendix 6.B The Gaussian distribution and Marcum functions 6.B.1 The Q function 6.B.2 Marcum function Chapter 7 Single‐carrier modulation 7.1 Signals and systems 7.1.1 Baseband digital transmission (PAM) Modulator Transmission channel Receiver Power spectral density 7.1.2 Passband digital transmission (QAM) Modulator Power spectral density Three equivalent representations of the modulator Coherent receiver 7.1.3 Baseband equivalent model of a QAM system Signal analysis 7.1.4 Characterization of system elements Transmitter Transmission channel Receiver 7.2 Intersymbol interference Discrete-time equivalent system Nyquist pulses Eye diagram 7.3 Performance analysis Signal-to-noise ratio Symbol error probability in the absence of ISI Matched filter receiver 7.4 Channel equalization 7.4.1 Zero‐forcing equalizer 7.4.2 Linear equalizer Optimum receiver in the presence of noise and ISI Alternative derivation of the IIR equalizer Signal-to-noise ratio at 7.4.3 LE with a finite number of coefficients Adaptive LE 7.4.4 Decision feedback equalizer Design of a DFE with a finite number of coefficients Design of a fractionally spaced DFE Signal-to-noise ratio at the decision point Remarks 7.4.5 Frequency domain equalization DFE with data frame using a unique word 7.4.6 LE‐ZF 7.4.7 DFE‐ZF with IIR filters DFE-ZF as noise predictor DFE as ISI and noise predictor 7.4.8 Benchmark performance of LE‐ZF and DFE‐ZF Comparison Performance for two channel models 7.4.9 Passband equalizers Passband receiver structure Optimization of equalizer coefficients and carrier phase offset Adaptive method 7.5 Optimum methods for data detection Maximum a posteriori probability (MAP) criterion 7.5.1 Maximum‐likelihood sequence detection Lower bound to error probability using MLSD The Viterbi algorithm Computational complexity of the VA 7.5.2 Maximum a posteriori probability detector Statistical description of a sequential machine The forward–backward algorithm Scaling The log likelihood function and the Max-Log-MAP criterion LLRs associated to bits of BMAP Relation between Max-Log–MAP and Log–MAP 7.5.3 Optimum receivers 7.5.4 The Ungerboeck's formulation of MLSD 7.5.5 Error probability achieved by MLSD Computation of the minimum distance 7.5.6 The reduced‐state sequence detection Trellis diagram The RSSE algorithm Further simplification: DFSE 7.6 Numerical results obtained by simulations QPSK over a minimum-phase channel QPSK over a non-minimum phase channel 8-PSK over a minimum phase channel 8-PSK over a non-minimum phase channel 7.7 Precoding for dispersive channels 7.7.1 Tomlinson–Harashima precoding 7.7.2 Flexible precoding 7.8 Channel estimation 7.8.1 The correlation method 7.8.2 The LS method Formulation using the data matrix 7.8.3 Signal‐to‐estimation error ratio Computation of the signal-to-estimation error ratio On the selection of the channel length 7.8.4 Channel estimation for multirate systems 7.8.5 The LMMSE method 7.9 Faster‐than‐Nyquist Signalling Bibliography Appendix 7.A Simulation of a QAM system Appendix 7.B Description of a finite‐state machine Appendix 7.C Line codes for PAM systems 7.C.1 Line codes Non-return-to-zero format Return-to-zero format Biphase format Delay modulation or Miller code Block line codes Alternate mark inversion 7.C.2 Partial response systems Appendix 7.D Implementation of a QAM transmitter Chapter 8 Multicarrier modulation 8.1 MC systems 8.2 Orthogonality conditions Time domain Frequency domain z-Transform domain 8.3 Efficient implementation of MC systems MC implementation employing matched filters Orthogonality conditions in terms of the polyphase components MC implementation employing a prototype filter 8.4 Non‐critically sampled filter banks 8.5 Examples of MC systems OFDM or DMT Filtered multitone 8.6 Analog signal processing requirements in MC systems 8.6.1 Analog filter requirements Interpolator filter and virtual subchannels Modulator filter 8.6.2 Power amplifier requirements 8.7 Equalization 8.7.1 OFDM equalization 8.7.2 FMT equalization Per-subchannel fractionally spaced equalization Per-subchannel T-spaced equalization Alternative per-subchannel T-spaced equalization 8.8 Orthogonal time frequency space modulation OTFS equalization 8.9 Channel estimation in OFDM Instantaneous estimate or LS method LMMSE The LS estimate with truncated impulse response 8.9.1 Channel estimate and pilot symbols 8.10 Multiuser access schemes 8.10.1 OFDMA 8.10.2 SC‐FDMA or DFT‐spread OFDM 8.11 Comparison between MC and SC systems 8.12 Other MC waveforms Bibliography Chapter 9 Transmission over multiple input multiple output channels 9.1 The MIMO NB channel Spatial multiplexing and spatial diversity Interference in MIMO channels 9.2 CSI only at the receiver 9.2.1 SIMO combiner Equalization and diversity 9.2.2 MIMO combiner Zero-forcing MMSE 9.2.3 MIMO non‐linear detection and decoding V-BLAST system Spatial modulation 9.2.4 Space‐time coding The Alamouti code The Golden code 9.2.5 MIMO channel estimation The least squares method The LMMSE method 9.3 CSI only at the transmitter 9.3.1 MISO linear precoding MISO antenna selection 9.3.2 MIMO linear precoding ZF precoding 9.3.3 MIMO non‐linear precoding Dirty paper coding TH precoding 9.3.4 Channel estimation for CSIT 9.4 CSI at both the transmitter and the receiver 9.5 Hybrid beamforming Hybrid beamforming and angular domain representation 9.6 Multiuser MIMO: broadcast channel CSI only at the receivers CSI only at the transmitter 9.6.1 CSI at both the transmitter and the receivers Block diagonalization User selection Joint spatial division and multiplexing 9.6.2 Broadcast channel estimation 9.7 Multiuser MIMO: multiple‐access channel CSI only at the transmitters CSI only at the receiver 9.7.1 CSI at both the transmitters and the receiver Block diagonalization 9.7.2 Multiple‐access channel estimation 9.8 Massive MIMO 9.8.1 Channel hardening 9.8.2 Multiuser channel orthogonality Bibliography Chapter 10 Spread‐spectrum systems 10.1 Spread‐spectrum techniques 10.1.1 Direct sequence systems Classification of CDMA systems Synchronization 10.1.2 Frequency hopping systems Classification of FH systems 10.2 Applications of spread‐spectrum systems 10.2.1 Anti‐jamming 10.2.2 Multiple access 10.2.3 Interference rejection 10.3 Chip matched filter and rake receiver Number of resolvable rays in a multipath channel Chip matched filter 10.4 Interference Detection strategies for multiple-access systems 10.5 Single‐user detection Chip equalizer Symbol equalizer 10.6 Multiuser detection 10.6.1 Block equalizer 10.6.2 Interference cancellation detector Successive interference cancellation Parallel interference cancellation 10.6.3 ML multiuser detector Correlation matrix Whitening filter 10.7 Multicarrier CDMA systems Bibliography Appendix 10.A Walsh Codes Chapter 11 Channel codes 11.1 System model 11.2 Block codes 11.2.1 Theory of binary codes with group structure Properties Parity check matrix Code generator matrix Decoding of binary parity check codes Cosets Two conceptually simple decoding methods Syndrome decoding 11.2.2 Fundamentals of algebra modulo-q arithmetic Polynomials with coefficients from a field Modular arithmetic for polynomials Remarks on finite fields Roots of a polynomial Minimum function Methods to determine the minimum function Properties of the minimum function 11.2.3 Cyclic codes The algebra of cyclic codes Properties of cyclic codes Encoding by a shift register of length r Encoding by a shift register of length k Hard decoding of cyclic codes Hamming codes Burst error detection 11.2.4 Simplex cyclic codes Property Relation to PN sequences 11.2.5 BCH codes An alternative method to specify the code polynomials Bose-Chaudhuri–Hocquenhem codes Binary BCH codes Reed–Solomon codes Decoding of BCH codes Efficient decoding of BCH codes 11.2.6 Performance of block codes 11.3 Convolutional codes 11.3.1 General description of convolutional codes Parity check matrix Generator matrix Transfer function Catastrophic error propagation 11.3.2 Decoding of convolutional codes Interleaving Two decoding models Decoding by the Viterbi algorithm Decoding by the forward-backward algorithm Sequential decoding 11.3.3 Performance of convolutional codes 11.4 Puncturing 11.5 Concatenated codes The soft-output Viterbi algorithm 11.6 Turbo codes Encoding The basic principle of iterative decoding FBA revisited Iterative decoding Performance evaluation 11.7 Iterative detection and decoding 11.8 Low‐density parity check codes 11.8.1 Representation of LDPC codes Matrix representation Graphical representation 11.8.2 Encoding Encoding procedure 11.8.3 Decoding Hard decision decoder The sum-product algorithm decoder The LR-SPA decoder The LLR-SPA or log-domain SPA The min-sum decoder Other decoding algorithms 11.8.4 Example of application Performance and coding gain 11.8.5 Comparison with turbo codes 11.9 Polar codes 11.9.1 Encoding Internal CRC LLRs associated to code bits 11.9.2 Tanner graph 11.9.3 Decoding algorithms Successive cancellation decoding – the principle Successive cancellation decoding – the algorithm Successive cancellation list decoding Other decoding algorithms 11.9.4 Frozen set design Genie-aided SC decoding Design based on density evolution Channel polarization 11.9.5 Puncturing and shortening Puncturing Shortening 11.9.6 Performance 11.10 Milestones in channel coding Bibliography Appendix 11.A Non‐binary parity check codes Linear codes Parity check matrix Code generator matrix Decoding of non-binary parity check codes Coset Two conceptually simple decoding methods Syndrome decoding Chapter 12 Trellis coded modulation 12.1 Linear TCM for one‐ and two‐dimensional signal sets 12.1.1 Fundamental elements Basic TCM scheme Example 12.1.2 Set partitioning 12.1.3 Lattices 12.1.4 Assignment of symbols to the transitions in the trellis 12.1.5 General structure of the encoder/bit‐mapper Computation of dfree 12.2 Multidimensional TCM Encoding Decoding 12.3 Rotationally invariant TCM schemes Bibliography Chapter 13 Techniques to achieve capacity 13.1 Capacity achieving solutions for multicarrier systems 13.1.1 Achievable bit rate of OFDM 13.1.2 Waterfilling solution Iterative solution 13.1.3 Achievable rate under practical constraints Effective SNR and system margin in MC systems Uniform power allocation and minimum rate per subchannel 13.1.4 The bit and power loading problem revisited Transmission modes Problem formulation Some simplifying assumptions On loading algorithms The Hughes-Hartogs algorithm The Krongold–Ramchandran–Jones algorithm The Chow–Cioffi–Bingham algorithm Comparison 13.2 Capacity achieving solutions for single carrier systems Achieving capacity Bibliography Chapter 14 Synchronization 14.1 The problem of synchronization for QAM systems 14.2 The phase‐locked loop 14.2.1 PLL baseband model Linear approximation 14.2.2 Analysis of the PLL in the presence of additive noise Noise analysis using the linearity assumption 14.2.3 Analysis of a second‐order PLL 14.3 Costas loop 14.3.1 PAM signals 14.3.2 QAM signals 14.4 The optimum receiver Timing recovery Carrier phase recovery 14.5 Algorithms for timing and carrier phase recovery 14.5.1 ML criterion Assumption of slow time varying channel 14.5.2 Taxonomy of algorithms using the ML criterion Feedback estimators Early-late estimators 14.5.3 Timing estimators Non-data aided Data aided and data directed Data and phase directed with feedback: differentiator scheme Data and phase directed with feedback: Mueller and Muller scheme Non-data aided with feedback 14.5.4 Phasor estimators Data and timing directed Non-data aided for M-PSK signals Data and timing directed with feedback 14.6 Algorithms for carrier frequency recovery 14.6.1 Frequency offset estimators Non-data aided Non-data aided and timing independent with feedback Non-data aided and timing directed with feedback 14.6.2 Estimators operating at the modulation rate Data aided and data directed Non-data aided for M-PSK 14.7 Second‐order digital PLL 14.8 Synchronization in spread‐spectrum systems 14.8.1 The transmission system Transmitter Optimum receiver 14.8.2 Timing estimators with feedback Non-data aided: non-coherent DLL Non-data aided modified code tracking loop Data and phase directed: coherent DLL 14.9 Synchronization in OFDM 14.9.1 Frame synchronization Effects of STO Schmidl and Cox algorithm 14.9.2 Carrier frequency synchronization Estimator performance Other synchronization solutions 14.10 Synchronization in SC‐FDMA Bibliography Chapter 15 Self‐training equalization 15.1 Problem definition and fundamentals Minimization of a special function 15.2 Three algorithms for PAM systems The Sato algorithm Benveniste–Goursat algorithm Stop-and-go algorithm Remarks 15.3 The contour algorithm for PAM systems Simplified realization of the contour algorithm 15.4 Self‐training equalization for partial response systems The Sato algorithm The contour algorithm 15.5 Self‐training equalization for QAM systems The Sato algorithm 15.5.1 Constant‐modulus algorithm The contour algorithm Joint contour algorithm and carrier phase tracking 15.6 Examples of applications Bibliography Appendix 15.A On the convergence of the contour algorithm Chapter 16 Low‐complexity demodulators 16.1 Phase‐shift keying 16.1.1 Differential PSK Error probability of M-DPSK 16.1.2 Differential encoding and coherent demodulation Differentially encoded BPSK Multilevel case 16.2 (D)PSK non‐coherent receivers 16.2.1 Baseband differential detector 16.2.2 IF‐band (1 bit) differential detector Signal at detection point 16.2.3 FM discriminator with integrate and dump filter 16.3 Optimum receivers for signals with random phase ML criterion Implementation of a non-coherent ML receiver Error probability for a non-coherent binary FSK system Performance comparison of binary systems 16.4 Frequency‐based modulations 16.4.1 Frequency shift keying Coherent demodulator Non-coherent demodulator Limiter–discriminator FM demodulator 16.4.2 Minimum‐shift keying 16.4.3 Remarks on spectral containment 16.5 Gaussian MSK PSD of GMSK 16.5.1 Implementation of a GMSK scheme Configuration I Configuration II Configuration III 16.5.2 Linear approximation of a GMSK signal Performance of GMSK Performance in the presence of multipath Bibliography Appendix 16.A Continuous phase modulation Alternative definition of CPM Advantages of CPM Chapter 17 Applications of interference cancellation 17.1 Echo and near‐end crosstalk cancellation for PAM systems Crosstalk cancellation and full-duplex transmission Polyphase structure of the canceller Canceller at symbol rate Adaptive canceller Canceller structure with distributed arithmetic 17.2 Echo cancellation for QAM systems 17.3 Echo cancellation for OFDM systems 17.4 Multiuser detection for VDSL 17.4.1 Upstream power back‐off 17.4.2 Comparison of PBO methods Bibliography Chapter 18 Examples of communication systems 18.1 The 5G cellular system 18.1.1 Cells in a wireless system 18.1.2 The release 15 of the 3GPP standard 18.1.3 Radio access network Time-frequency plan NR data transmission chain OFDM numerology Channel estimation 18.1.4 Downlink Synchronization Initial access or beam sweeping Channel estimation Channel state information reporting 18.1.5 Uplink Transform precoding numerology Channel estimation Synchronization Timing advance 18.1.6 Network slicing 18.2 GSM Radio subsystem 18.3 Wireless local area networks Medium access control protocols 18.4 DECT 18.5 Bluetooth 18.6 Transmission over unshielded twisted pairs 18.6.1 Transmission over UTP in the customer service area 18.6.2 High‐speed transmission over UTP in local area networks 18.7 Hybrid fibre/coaxial cable networks Ranging and power adjustment in OFDMA systems Ranging and power adjustment for uplink transmission Bibliography Appendix 18.A Duplexing Three methods Appendix 18.B Deterministic access methods Chapter 19 High‐speed communications over twisted‐pair cables 19.1 Quaternary partial response class‐IV system Analog filter design Received signal and adaptive gain control Near-end crosstalk cancellation Decorrelation filter Adaptive equalizer Compensation of the timing phase drift Adaptive equalizer coefficient adaptation Convergence behaviour of the various algorithms 19.1.1 VLSI implementation Adaptive digital NEXT canceller Adaptive digital equalizer Timing control Viterbi detector 19.2 Dual‐duplex system Dual-duplex transmission Physical layer control Coding and decoding 19.2.1 Signal processing functions The 100BASE-T2 transmitter The 100BASE-T2 receiver Computational complexity of digital receive filters Bibliography Appendix 19.A Interference suppression Index EULA