دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 2 نویسندگان: Robert Kissell سری: ISBN (شابک) : 0128156309, 9780128156308 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 614 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Algorithmic Trading Methods: Applications Using Advanced Statistics, Optimization, and Machine Learning Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های معاملات الگوریتمی: برنامه های کاربردی با استفاده از آمار پیشرفته ، بهینه سازی و تکنیک های یادگیری ماشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روشهای معامله الگوریتمی: برنامههای کاربردی با استفاده از تکنیکهای آمار پیشرفته، بهینهسازی و یادگیری ماشین، ویرایش دوم، دنبالهای بر علم تجارت الگوریتمی و مدیریت پورتفولیو است. این نسخه شامل فصول جدیدی در مورد تجارت الگوریتمی، تجزیه و تحلیل پیشرفته معاملات، تجزیه و تحلیل رگرسیون، بهینه سازی و روش های آماری پیشرفته است. این نسخه با افزایش تمرکز خود بر استراتژیها و مدلهای معاملاتی، بینشهای جدیدی را در مورد محیط مالی همیشه در حال تغییر، تجزیه و تحلیل قبل از تجارت و پس از تجارت، تجزیه و تحلیل هزینه و ریسک انحلال، و الزامات گزارشدهی نظارتی و انطباق دارد. این کتاب با برجسته کردن تکنیکهای جدید سرمایهگذاری، شامل مطالبی برای کمک به بهترین فرآیند اجرا، اعتبارسنجی مدل، تست کیفیت و اطمینان، مدلسازی سفارش محدود و تحلیل مسیریابی سفارشات هوشمند است. شامل تکنیکهای مدلسازی پیشرفته با استفاده از یادگیری ماشین، تجزیه و تحلیل پیشبینیکننده و شبکههای عصبی است. این متن مجموعه ای از توابع تجزیه و تحلیل هزینه تراکنش را به عنوان یک کتابخانه TCA در اختیار خوانندگان قرار می دهد. این ابزارهای برنامه نویسی از طریق برنامه های کاربردی نرم افزاری و زبان های برنامه نویسی متعدد قابل دسترسی هستند.
Algorithmic Trading Methods: Applications using Advanced Statistics, Optimization, and Machine Learning Techniques, Second Edition, is a sequel to The Science of Algorithmic Trading and Portfolio Management. This edition includes new chapters on algorithmic trading, advanced trading analytics, regression analysis, optimization, and advanced statistical methods. Increasing its focus on trading strategies and models, this edition includes new insights into the ever-changing financial environment, pre-trade and post-trade analysis, liquidation cost & risk analysis, and compliance and regulatory reporting requirements. Highlighting new investment techniques, this book includes material to assist in the best execution process, model validation, quality and assurance testing, limit order modeling, and smart order routing analysis. Includes advanced modeling techniques using machine learning, predictive analytics, and neural networks. The text provides readers with a suite of transaction cost analysis functions packaged as a TCA library. These programming tools are accessible via numerous software applications and programming languages.
Front Cover Algorithmic Trading Methods Algorithmic Trading Methods: Applications using Advanced Statistics, Optimization, and Machine Learning Techniques Copyright Contents Preface Acknowledgments 1 - Introduction WHAT IS ELECTRONIC TRADING? WHAT IS ALGORITHMIC TRADING? TRADING ALGORITHM CLASSIFICATIONS TRADING ALGORITHM STYLES INVESTMENT CYCLE INVESTMENT OBJECTIVE INFORMATION CONTENT INVESTMENT STYLES INVESTMENT STRATEGIES RESEARCH DATA BROKER TRADING DESKS RESEARCH FUNCTION SALES FUNCTION IMPLEMENTATION TYPES ALGORITHMIC DECISION-MAKING PROCESS 2 - Algorithmic Trading ADVANTAGES DISADVANTAGES GROWTH IN ALGORITHMIC TRADING MARKET PARTICIPANTS CLASSIFICATIONS OF ALGORITHMS TYPES OF ALGORITHMS ALGORITHMIC TRADING TRENDS DAY OF WEEK EFFECT INTRADAY TRADING PROFILES TRADING VENUE CLASSIFICATION Displayed Market Dark Pool Dark Pool Controversies TYPES OF ORDERS REVENUE PRICING MODELS Order Priority EXECUTION OPTIONS ALGORITHMIC TRADING DECISIONS Macro Level Strategies Micro Level Decisions Limit Order Models Smart Order Routers ALGORITHMIC ANALYSIS TOOLS Pre-Trade Analysis Intraday Analysis Post-Trade Analysis HIGH FREQUENCY TRADING Auto Market Making Quantitative Trading/Statistical Arbitrage Rebate/Liquidity Trading DIRECT MARKET ACCESS 3 - Transaction Costs WHAT ARE TRANSACTION COSTS? WHAT IS BEST EXECUTION? WHAT IS THE GOAL OF IMPLEMENTATION? UNBUNDLED TRANSACTION COST COMPONENTS Commission Fees Taxes Rebates Spreads Delay Cost Price Appreciation Market Impact Timing Risk Opportunity Cost TRANSACTION COST CLASSIFICATION TRANSACTION COST CATEGORIZATION TRANSACTION COST ANALYSIS Measuring/Forecasting Cost vs. Profit and Loss IMPLEMENTATION SHORTFALL Complete Execution Opportunity Cost (Andre Perold) Expanded Implementation Shortfall (Wayne Wagner) IMPLEMENTATION SHORTFALL FORMULATION Trading Cost/Arrival Cost EVALUATING PERFORMANCE Trading Price Performance Benchmark Price Performance VWAP Benchmark Participation-Weighted Price Benchmark Relative Performance Measure Pretrade Benchmark Index-Adjusted Performance Metric Z-Score Evaluation Metric Market Cost-Adjusted Z-Score Adaptation Tactic COMPARING ALGORITHMS Nonparametric Tests Paired Samples Sign Test Wilcoxon Signed Rank Test INDEPENDENT SAMPLES Mann–Whitney U Test MEDIAN TEST DISTRIBUTION ANALYSIS CHI-SQUARE GOODNESS OF FIT KOLMOGOROV–SMIRNOV GOODNESS OF FIT EXPERIMENTAL DESIGN Proper Statistical Tests Small Sample Size Data Ties Proper Categorization Balanced Data Sets FINAL NOTE ON POSTTRADE ANALYSIS 4 - Market Impact Models INTRODUCTION DEFINITION Example 1: Temporary Market Impact Example 2: Permanent Market Impact Graphical Illustrations of Market Impact Illustration #1: Price Trajectory Illustration #2: Supply–Demand Equilibrium After Shares Transact, We Face Some Uncertainty—What Happens Next? Illustration #3: Temporary Impact Decay Function Example #3: Temporary Decay Formulation Illustration #4: Various Market Impact Price Trajectories Developing a Market Impact Model Essential Properties of a Market Impact Model The Shape of the Market Impact Function Example: Convex Shape Example: Linear Shape Example: Concave Shape DERIVATION OF MODELS Almgren and Chriss Market Impact Model Random Walk With Price Drift—Discrete Time Periods Random Walk With Market Impact (No Price Drift) I-STAR MARKET IMPACT MODEL MODEL FORMULATION I-Star: Instantaneous Impact Equation The Market Impact Equation Derivation of the Model Cost Allocation Method I∗ Formulation Comparison of Approaches 5 - Probability and Statistics INTRODUCTION RANDOM VARIABLES PROBABILITY DISTRIBUTIONS Example: Discrete Probability Distribution Function Example: Continuous Probability Distribution Function Descriptive Statistics PROBABILITY DISTRIBUTION FUNCTIONS CONTINUOUS DISTRIBUTION FUNCTIONS Normal Distribution Standard Normal Distribution Student\'s t-Distribution Log-Normal Distribution Uniform Distribution Exponential Distribution Chi-Square Distribution Logistic Distribution Triangular Distribution DISCRETE DISTRIBUTIONS Binomial Distribution Poisson Distribution END NOTES 6 - Linear Regression Models INTRODUCTION Linear Regression Requirements Regression Metrics LINEAR REGRESSION True Linear Regression Model Simple Linear Regression Model Solving the Simple Linear Regression Model Step 1: Estimate Model Parameters Step 2: Evaluate Model Performance Statistics Standard Error of the Regression Model R2 Goodness of Fit Step 3: Test for Statistical Significance of Factors T-test: Hypothesis Test: F-test: Hypothesis Test: Example: Simple Linear Regression Multiple Linear Regression Model Solving the Multiple Linear Regression Model Step 1: Estimate Model Parameters Step 2: Calculate Model Performance Statistics Standard Error of the Regression Model R2 Goodness of Fit Step 3: Test for Statistical Significance of Factors T-test: Hypothesis Test: F-test: Hypothesis Test: Example: Multiple Linear Regression MATRIX TECHNIQUES Estimate Parameters Compute Standard Errors of b R2 Statistic F-Statistic LOG REGRESSION MODEL Example: Log-Transformation Example: Log-Linear Transformation POLYNOMIAL REGRESSION MODEL FRACTIONAL REGRESSION MODEL 7 - Probability Models INTRODUCTION DEVELOPING A PROBABILITY MODEL Comparison of Linear Regression Model to Probability Model Power Function Model Logit Model Probit Model Comparison of Logit and Probit Models Outcome Data Model Formulation Mean Variance Grouping Data Solving Binary Output Models Step 1: Specify Probability Function Step 2: Set Up a Likelihood Function Based on Actual Outcome Results for all Observations. For Example, If We Have n Observ ... SOLVING PROBABILITY OUTPUT MODELS EXAMPLES Example 7.1 Power Function Example 7.2 Logit Model COMPARISON OF POWER FUNCTION TO LOGIT MODEL Example 7.3 Logistic Regression CONCLUSIONS 8 - Nonlinear Regression Models INTRODUCTION REGRESSION MODELS Linear Regression Model Polynomial Regression Model Fractional Regression Model Log-linear Regression Model Logistic Regression Model Nonlinear Model NONLINEAR FORMULATION SOLVING NONLINEAR REGRESSION MODEL ESTIMATING PARAMETERS Maximum Likelihood Estimation (MLE) Step I: Define the Model Step II: Define the Likelihood Function Step III: Maximize the Log-Likelihood Function NONLINEAR LEAST SQUARES (NON-OLS) Step I: Define the Model Step II: Define the Error Term Step III: Define a Loss Function—Sum of Square Errors Step IV: Minimize the Sum of Square Error HYPOTHESIS TESTING EVALUATE MODEL PERFORMANCE SAMPLING TECHNIQUES RANDOM SAMPLING SAMPLING WITH REPLACEMENT SAMPLING WITHOUT REPLACEMENT MONTE CARLO SIMULATION BOOTSTRAPPING TECHNIQUES JACKKNIFE SAMPLING TECHNIQUES Important Notes on Sampling in Nonlinear Regression Models 9 - Machine Learning Techniques INTRODUCTION TYPES OF MACHINE LEARNING EXAMPLES Cluster Analysis CLASSIFICATION REGRESSION NEURAL NETWORKS 10 - Estimating I-Star Market Impact Model Parameters INTRODUCTION I-STAR MARKET IMPACT MODEL SCIENTIFIC METHOD Step 1: Ask a Question Step 2: Research the Problem Step 3: Construct a Hypothesis Step 4: Test the Hypothesis Step 6: Conclusions Communicate Solution Technique The Question Research the Problem Construct a Hypothesis Test the Hypothesis Underlying Data Set Data Definitions Imbalance/Order Size Average daily volume Actual market volume Stock volatility POV Rate Arrival Cost Imbalance Size Issues Model Verification Model Verification #1: Graphical Illustration Model Verification #2: Regression Analysis Model Verification #3: z-Score Analysis Model Verification #4: Error Analysis Stock Universe Analysis Period Time Period Number of Data Points Imbalance Side Volume Turnover VWAP First Price Average Daily Volume Annualized Volatility Size POV Rate Cost Estimating Model Parameters Sensitivity Analysis Cost Curves Statistical Analysis Error Analysis Stock-Specific Error Analysis 11 - Risk, Volatility, and Factor Models INTRODUCTION VOLATILITY MEASURES Log-Returns Average Return Variance Volatility Covariance Correlation Dispersion Value-at-Risk IMPLIED VOLATILITY Beta Range FORECASTING STOCK VOLATILITY Volatility Models Returns Historical Moving Average (HMA) Exponential Weighted Moving Average (EWMA) ARCH Volatility Model GARCH Volatility Model HMA-VIX Adjustment Model Determining Parameters via Maximum Likelihood Estimation Likelihood Function Measuring Model Performance Root Mean Square Error (RMSE) Root Mean Z-Score Squared Error (RMZSE) Outlier Analysis HISTORICAL DATA AND COVARIANCE False Relationships Example #1: False Negative Signal Calculations Example #2: False Positive Signal Calculation Degrees of Freedom FACTOR MODELS Matrix Notation Factor Model in Matrix Notation TYPES OF FACTOR MODELS Index Model Single-Index Model Multi-Index Models Macroeconomic Factor Models Cross Sectional Multi-Factor Model Statistical Factor Models How Many Factors Should be Selected? 12 - Volume Forecasting Techniques INTRODUCTION MARKET IMPACT MODEL AVERAGE DAILY VOLUME Methodology Definitions Monthly Volume Forecasting Model Analysis Regression Results OBSERVATIONS OVER THE 19-YEAR PERIOD: 2000–18 OBSERVATIONS OVER THE MOST RECENT 3-YEAR PERIOD: 2016–18 Volumes and Stock Price Correlation FORECASTING DAILY VOLUMES Our Daily Volume Forecasting Analysis is as Follows Definitions Daily Forecasting Analysis—Methodology Variable Notation ARMA Daily Forecasting Model Analysis Goal Step 1. Determine Which is More Appropriate: ADV or MDV and the Historical Look-Back Number of Days Conclusion #1 Step 2. Estimate the DayOfWeek(t) Parameter Conclusion #2 Step 3. Estimate the Autoregressive Parameter β^ Forecast Improvements Daily Volume Forecasting Model Conclusion #3 Forecasting Intraday Volumes Profiles Forecasting Intraday Volume Profiles Predicting Remaining Daily Volume 13 - Algorithmic Decision-Making Framework INTRODUCTION EQUATIONS Variables Important Equations ALGORITHMIC DECISION-MAKING FRAMEWORK Select Benchmark Price Arrival Price Benchmark Historical Price Benchmark Future Price Benchmark COMPARISON OF BENCHMARK PRICES Specify Trading Goal Further Insight Specify Adaptation Tactic Projected Cost Target Cost Tactic Aggressive in the Money Passive-in-the-Money COMPARISON ACROSS ADAPTATION TACTICS MODIFIED ADAPTATION TACTICS How Often Should we Reoptimization Our Tactic? 14 - Portfolio Algorithms and Trade Schedule Optimization INTRODUCTION TRADER\'S DILEMMA Variables TRANSACTION COST EQUATIONS Market Impact Price Appreciation Timing Risk One-Sided Optimization Problem OPTIMIZATION FORMULATION Constraint Description Objective Function Difficulty Optimization Objective Function Simplification PORTFOLIO OPTIMIZATION TECHNIQUES Quadratic Programming Approach Trade Schedule Exponential Residual Schedule Exponential Trading Rate Parameter Market Impact Expression Timing Risk Expression Comparison of Optimization Techniques How Long did it Take to Solve the Portfolio Objective Problem? How Accurate Was the Solution for Each Optimization Technique? PORTFOLIO ADAPTATION TACTICS Description of AIM and PIM for Portfolio Trading How Often Should we Reoptimize? Appendix 15 - Advanced Algorithmic Modeling Techniques INTRODUCTION TRADING COST EQUATIONS Model Inputs TRADING STRATEGY Percentage of Volume Trading Rate Trade Schedule Comparison of POV Rate to Trade Rate TRADING TIME TRADING RISK COMPONENTS TRADING COST MODELS—REFORMULATED Market Impact Expression I-Star Market Impact for a Single Stock Order Important note Market Impact for a Basket of Stock TIMING RISK EQUATION Derivation of the 1/3 Factor Timing Risk For a Basket of Stock COMPARISON OF MARKET IMPACT ESTIMATES Forecasting Covariance Efficient Trading Frontier Single Stock Trade Cost Objective Function Portfolio Trade Cost Objective Function MANAGING PORTFOLIO RISK Residual Risk Curve Minimum Trading Risk Quantity Maximum Trading Opportunity When to Use These Criteria? Program-Block Decomposition 16 - Decoding and Reverse Engineering Broker Models with Machine Learning Techniques INTRODUCTION PRE-TRADE OF PRE-TRADES I-Star Model Approach Neural Network Model Approach PORTFOLIO OPTIMIZATION What Should the Portfolio Manager Do? Deriving Portfolio Optimization Market Impact Models Example: Share Quantity Regression Model Example: Trade Value Regression Model 17 - Portfolio Construction with Transaction Cost Analysis INTRODUCTION PORTFOLIO OPTIMIZATION AND CONSTRAINTS TRANSACTION COSTS IN PORTFOLIO OPTIMIZATION PORTFOLIO MANAGEMENT PROCESS Example: Efficient Trading Frontier With and Without Short Positions Example: Maximizing Investor Utility TRADING DECISION PROCESS What is the Appropriate Optimal Strategy to Use? UNIFYING THE INVESTMENT AND TRADING THEORIES Which Execution Strategy Should the Trader Use? COST-ADJUSTED FRONTIER DETERMINING THE APPROPRIATE LEVEL OF RISK AVERSION BEST EXECUTION FRONTIER PORTFOLIO CONSTRUCTION WITH TRANSACTION COSTS Quest for Best Execution Frontier Return Risk EXAMPLE Important Findings CONCLUSION 18 - Quantitative Analysis with TCA INTRODUCTION Quantitative Overlays Market Impact Factor Scores Cost Curves Alpha Capture Investment Capacity Portfolio Optimization Backtesting Liquidation Cost Sensitivity Analysis ARE THE EXISTING MODELS USEFUL ENOUGH FOR PORTFOLIO CONSTRUCTION? Current State of Vendor Market Impact Models PRETRADE OF PRETRADES Applications Example #1 Example #2 Example #3 Example #4 HOW EXPENSIVE IS IT TO TRADE? Acquisition and Liquidation Costs Portfolio Management—Screening Techniques BACKTESTING STRATEGIES MARKET IMPACT SIMULATION Simulation Scenario MULTI-ASSET CLASS INVESTING Investing in Beta Exposure and Other Factors Example #5 Equities Exchange-Traded Funds Futures Beta Investment Allocation MULTI-ASSET TRADING COSTS Global Equity Markets Multi-Asset Classes Why do Trading Costs Vary Across Asset Classes? Definitions Observations Equities Exchange Traded Funds Futures Bonds Commodities Currency Room for Improvement MARKET IMPACT FACTOR SCORES Current State of Market Impact Factor Scores MARKET IMPACT FACTOR SCORE ANALYSIS ALPHA CAPTURE PROGRAM Example #6 Example #7 Alpha Capture Curves Important Note 19 - Machine Learning and Trade Schedule Optimization INTRODUCTION MULTIPERIOD TRADE SCHEDULE OPTIMIZATION PROBLEM Setting up the Problem Trader\'s Dilemma Objective Function NONLINEAR OPTIMIZATION CONVERGENCE Newton\'s Method Example #1 Example #2 MACHINE LEARNING Neural Networks Neural Network Errors MACHINE LEARNING TRAINING EXPERIMENT Step I: Generating Simulated Trade Baskets Step II: Compile Stock and Basket Data Statistics X-Input Variables Y-Output Variable Step III: Solve the Multiperiod Trade Schedule Optimization Problem Step IV: Train the NNET Step V. Calculate the Initial Parameter Values for the NNET Principal Component Analysis Stepwise Regression Analysis Neural Network Structure Neural Network Error PERFORMANCE RESULTS CONCLUSIONS 20 - TCA Analysis Using MATLAB, Excel, and Python INTRODUCTION TRANSACTION COST ANALYSIS FUNCTIONS TRANSACTION COST MODEL MATLAB FUNCTIONS EXCEL AND PYTHON FUNCTIONS TCA REPORT EXAMPLES CONCLUSION 21 - Transaction Cost Analysis (TCA) Library INTRODUCTION TCA Library TRANSACTION COST ANALYSIS USING THE TCA LIBRARY List of TCA Functions Pretrade Analysis Posttrade Analysis Portfolio Management Optimization Calculations Conversions REFERENCES Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z Back Cover