دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Daniel Zingaro
سری:
ISBN (شابک) : 9781718500815, 2020031511
ناشر: No Starch Press, Inc.
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Algorithmic Thinking: A Problem-Based Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تفکر الگوریتمی: مقدمه ای مبتنی بر مسئله نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Brief Contents Contents in Detail Foreword Acknowledgments Introduction Online Resources Who This Book Is For The Programming Language Why Use C? Static Keyword Include Files Freeing Memory Topics Judges Anatomy of a Problem Description Problem: Food Lines The Problem Solving the Problem Notes Chapter 1: Hash Tables Problem 1: Unique Snowflakes The Problem Simplifying the Problem Solving the Core Problem Solution 1: Pairwise Comparisons Solution 2: Doing Less Work Hash Tables Hash Table Design Why Use Hash Tables? Problem 2: Compound Words The Problem Identifying Compound Words Solution Problem 3: Spelling Check: Deleting a Letter The Problem Thinking About Hash Tables An Ad Hoc Solution Summary Notes Chapter 2: Trees and Recursion Problem 1: Halloween Haul The Problem Binary Trees Solving the Sample Instance Representing Binary Trees Collecting All the Candy A Completely Different Solution Walking the Minimum Number of Streets Reading the Input Why Use Recursion? Problem 2: Descendant Distance The Problem Reading the Input Number of Descendants from One Node Number of Descendants from All Nodes Sorting Nodes Outputting the Information The main Function Summary Notes Chapter 3: Memoization and Dynamic Programming Problem 1: Burger Fervor The Problem Forming a Plan Characterizing Optimal Solutions Solution 1: Recursion Solution 2: Memoization Solution 3: Dynamic Programming Memoization and Dynamic Programming Step 1: Structure of Optimal Solution Step 2: Recursive Solution Step 3: Memoization Step 4: Dynamic Programming Problem 2: Moneygrubbers The Problem Characterizing Optimal Solutions Solution 1: Recursion The main Function Solution 2: Memoization Problem 3: Hockey Rivalry The Problem About Rivalries Characterizing Optimal Solutions Solution 1: Recursion Solution 2: Memoization Solution 3: Dynamic Programming A Space Optimization Problem 4: Ways to Pass The Problem Solution: Memoization Summary Notes Chapter 4: Graphs and Breadth-First Search Problem 1: Knight Chase The Problem Moving Optimally Best Knight Outcome The Knight Flip-Flop A Time Optimization Graphs and BFS What Are Graphs? Graphs vs. Trees BFS on Graphs Problem 2: Rope Climb The Problem Solution 1: Finding the Moves Solution 2: A Remodel Problem 3: Book Translation The Problem Building the Graph The BFS Total Cost Summary Notes Chapter 5: Shortest Paths in Weighted Graphs Problem 1: Mice Maze The Problem Moving On from BFS Shortest Paths in Weighted Graphs Building the Graph Implementing Dijkstra\'s Algorithm Two Optimizations Dijkstra\'s Algorithm Runtime of Dijkstra\'s Algorithm Negative-Weight Edges Problem 2: Grandma Planner The Problem Adjacency Matrix Building the Graph Weird Paths Task 1: Shortest Paths Task 2: Number of Shortest Paths Summary Notes Chapter 6: Binary Search Problem 1: Feeding Ants The Problem A New Flavor of Tree Problem Reading the Input Testing Feasibility Searching for a Solution Binary Search Runtime of Binary Search Determining Feasibility Searching a Sorted Array Problem 2: River Jump The Problem A Greedy Idea Testing Feasibility Searching for a Solution Reading the Input Problem 3: Living Quality The Problem Sorting Every Rectangle Binary Search Testing Feasibility Testing Feasibility More Quickly Problem 4: Cave Doors The Problem Solving a Subtask Using a Linear Search Using Binary Search Summary Notes Chapter 7: Heaps and Segment Trees Problem 1: Supermarket Promotion The Problem Solution 1: Maximum and Minimum in an Array Max-Heaps Min-Heaps Solution 2: Heaps Heaps Two More Applications Choosing a Data Structure Problem 2: Building Treaps The Problem Recursively Outputting Treaps Sorting by Label Solution 1: Recursion Range Maximum Queries Segment Trees Solution 2: Segment Trees Segment Trees Problem 3: Two Sum The Problem Filling the Segment Tree Querying the Segment Tree Updating the Segment Tree The main Function Summary Notes Chapter 8: Union-Find Problem 1: Social Network The Problem Modeling as a Graph Solution 1: BFS Union-Find Solution 2: Union-Find Optimization 1: Union by Size Optimization 2: Path Compression Union-Find Relationships: Three Requirements Choosing Union-Find Optimizations Problem 2: Friends and Enemies The Problem Augmentation: Enemies The main Function Find and Union SetFriends and SetEnemies AreFriends and AreEnemies Problem 3: Drawer Chore The Problem Equivalent Drawers The main Function Find and Union Summary Notes Afterword Appendix A: Algorithm Runtime The Case for Timing . . . and Something Else Big O Notation Linear Time Constant Time Another Example Quadratic Time Big O in This Book Appendix B: Because I Can\'t Resist Unique Snowflakes: Implicit Linked Lists Burger Fervor: Reconstructing a Solution Knight Chase: Encoding Moves Dijkstra\'s Algorithm: Using a Heap Mice Maze: Tracing with Heaps Mice Maze: Implementation with Heaps Compressing Path Compression Step 1: No More Ternary If Step 2: Cleaner Assignment Operator Step 3: Understand the Recursion Appendix C: Problem Credits Index