دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Raymond Bisdorff
سری:
ISBN (شابک) : 9783030909284, 9783030909277
ناشر: Springer International Publishing
سال نشر:
تعداد صفحات:
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 51 Mb
در صورت تبدیل فایل کتاب Algorithmic Decision Making with Python Resources : From Multicriteria Performance Records to Decision Algorithms via Bipolar-Valued Outranking Digraphs به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تصمیمگیری الگوریتمی با منابع پایتون: از رکوردهای عملکرد چند معیاره تا الگوریتمهای تصمیمگیری از طریق نمودارهای رتبهبندی برتر با ارزش دوقطبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تصمیم گیری الگوریتمی با منابع پایتون (2022) [Bisdorff] [978030909284]
Algorithmic Decision Making with Python Resources (2022)[Bisdorff] [978030909284]
Preface Acknowledgements Introduction The Editing Strategy Organisation of the Book Highlights Contents List of Figures List of Tables Listings Part I Introduction to the Digraph3 Python Resources 1 Working with the Digraph3 Python Resources Contents 1.1 Installing the Digraph3 Resources 1.2 Organisation of the Digraph3 Python Modules 1.3 Starting a Digraph3 Terminal Session 1.4 Inspecting a Digraph Object References 2 Working with Bipolar-Valued Digraphs Contents 2.1 Random Bipolar-Valued Digraphs 2.2 Graphviz Drawings 2.3 Asymmetric and Symmetric Parts 2.4 Border and Inner Parts 2.5 Fusion by Epistemic Disjunction 2.6 Dual, Converse, and Codual Digraphs 2.7 Symmetric and Transitive Closures 2.8 Strong Components 2.9 CSV Storage 2.10 Complete, Empty, and Indeterminate Digraphs Notes Notes References 3 Working with Outranking Digraphs Contents 3.1 The Hybrid Outranking Digraph Model 3.2 The Bipolar-Valued Outranking Digraph 3.3 Pairwise Comparisons 3.4 Recoding the Characteristic Valuation Domain 3.5 The Strict Outranking Digraph Notes Notes References Part II Evaluation Models and Decision Algorithms 4 Building a Best Choice Recommendation Contents 4.1 What Office Location to Choose? 4.2 The Given Performance Tableau 4.3 Computing the Outranking Digraph 4.4 Designing a Best Choice Recommender System 4.5 Computing the Rubis Best Choice Recommendation 4.6 Weakly Ordering the Outranking Digraph Notes Notes References 5 How to Create a New Multiple-Criteria Performance Tableau Contents 5.1 Editing a Template File 5.2 Editing the Decision Alternatives 5.3 Editing the Decision Objectives 5.4 Editing the Family of Performance Criteria 5.5 Editing the Performance Evaluations 5.6 Inspecting the Template Outranking Relation References 6 Generating Random Performance Tableaux Contents 6.1 Introduction 6.2 Random Standard Performance Tableaux 6.3 Random Cost-Benefit Performance Tableaux 6.4 Random Three Objectives Performance Tableaux 6.5 Random Academic Performance Tableaux Reference 7 Who Wins the Election? Contents 7.1 Linear Voting Profiles 7.2 Computing the Winner 7.3 The Majority Margins Digraph 7.4 Cyclic Social Preferences 7.5 On Generating Realistic Random Linear Voting Profiles References 8 Ranking with Multiple Incommensurable Criteria Contents 8.1 The Ranking Problem 8.2 The Copeland Ranking 8.3 The NetFlows Ranking 8.4 Kemeny Rankings 8.5 Slater Rankings 8.6 The Kohler Ranking-by-Choosing Rule 8.7 The RankedPairs Ranking Rule References 9 Rating by Sorting into Relative Performance Quantiles Contents 9.1 Quantile Sorting on a Single Performance Criterion 9.2 Sorting into Quantiles with Multiple Performance Criteria 9.3 The Sparse Pre-ranked Outranking Digraph Model 9.4 Ranking Pre-ranked Sparse Outranking Digraphs References 10 Rating-by-Ranking with Learned Performance Quantile Norms Contents 10.1 The Absolute Rating Problem 10.2 Incremental Learning of Historical Performance Quantiles 10.3 Rating-by-Ranking New Performances with Quantile Norms References 11 HPC Ranking of Big Performance Tableaux Contents 11.1 C-compiled Python Modules 11.2 Big Data Performance Tableaux 11.3 C-implemented Integer-Valued Outranking Digraphs 11.4 The Sparse Implementation of Big Outranking Digraphs 11.5 Quantiles Ranking of Big Performance Tableaux 11.6 HPC Quantiles Ranking Records References Part III Evaluation and Decision Case Studies 12 Alice\'s Best Choice: A Selection Case Study Contents 12.1 The Decision Problem 12.2 The Performance Tableau 12.3 Building a Best Choice Recommendation 12.4 Robustness Analysis References 13 The Best Academic Computer Science Depts: A Ranking Case Study Contents 13.1 The THE Performance Tableau 13.2 Ranking with Multiple Criteria of Ordinal Significance 13.3 How to Judge the Quality of a Ranking Result? References 14 The Best Students, Where Do They Study? A Rating Case Study Contents 14.1 The Rating Problem 14.2 The 2004 Performance Quintiles 14.3 Rating-by-Ranking with Lower-Closed Quintile Limits 14.4 Rating by Quintiles Sorting References 15 Exercises Contents 15.1 Who Will Receive the Best Student Award? (§) 15.2 How to Fairly Rank Movies? (§) 15.3 What Is Your Best Choice Recommendation? (§§) 15.4 Planning the Next Holiday Activity (§§) 15.5 What Is the Best Public Policy? (§§) 15.6 A Fair Diploma Validation Decision (§§§) References Part IV Advanced Topics 16 On Measuring the Fitness of a Multiple-Criteria Ranking Contents 16.1 Listing Movies from Best Star-Rated to Worst 16.2 Kendall\'s Ordinal Correlation Tau Index 16.3 Bipolar-Valued Relational Equivalence 16.4 Fitness of Ranking Heuristics 16.5 Illustrating Preference Divergences 16.6 Exploring the ``better rated\'\' and the ``as well as rated\'\' Opinions References 17 On Computing Digraph Kernels Contents 17.1 What Is a Graph Kernel? 17.2 Initial and Terminal Kernels 17.3 Kernels in Lateralized Digraphs 17.4 Computing First and Last Choice Recommendations 17.5 Tractability of Kernel Computation 17.6 Solving Kernel Equation Systems Notes Notes References 18 On Confident Outrankings with Uncertain Criteria Significance Weights Contents 18.1 Modelling Uncertain Criteria Significance Weights 18.2 Bipolar-Valued Likelihood of Outranking Situations 18.3 Confidence level Of Outranking Digraphs References 19 Robustness Analysis of Outranking Digraphs Contents 19.1 Cardinal or Ordinal Criteria Significance Weights? 19.2 Qualifying the Stability of Outranking Situations 19.3 Computing the Stability Denotation of Outranking Situations 19.4 Robust Bipolar-Valued Outranking Digraphs 19.5 Characterising Unopposed Multiobjective Outranking Situations 19.6 Computing Pareto Efficient Multiobjective Choices References 20 Tempering Plurality Tyranny Effects in Social Choice Contents 20.1 Two-Stage Elections with Multipartisan Primary Selection 20.2 Bipolar Approval–Disapproval Voting Systems 20.3 Pairwise Comparison of Approval–Disapproval Votes 20.4 Three-Valued Evaluative Voting Systems 20.5 Favouring Multipartisan Candidates References Part V Working with Undirected Graphs 21 Bipolar-Valued Undirected Graphs Contents 21.1 Implementing Simple Graphs 21.2 Q-Coloring of a Graph 21.3 MIS and Clique Enumeration 21.4 Line Graphs and Maximal Matchings 21.5 Grids and the Ising Model 21.6 Simulating Metropolis Random Walks 21.7 Computing the Non-isomorphic MISs of the n-Cycle Graph References 22 On Tree Graphs and Graph Forests Contents 22.1 Generating Random Tree Graphs 22.2 Recognising Tree Graphs 22.3 Spanning Trees and Forests 22.4 Maximum Determined Spanning Forests References 23 About Split, Comparability, Interval, and Permutation Graphs Contents 23.1 A `multiply\' Perfect Graph 23.2 Who Is the Liar? 23.3 Generating Permutation Graphs 23.4 Recognising Permutation Graphs References Index