دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Jon Kleinberg, EМЃva Tardos سری: ISBN (شابک) : 0321295358, 9780321295354 ناشر: Pearson/Addison-Wesley سال نشر: 2005 تعداد صفحات: 863 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Algorithm design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی الگوریتم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"طراحی الگوریتم رویکرد جدیدی به درس الگوریتمها دارد و ایدههای الگوریتمی را از طریق مسائل دنیای واقعی که به آنها انگیزه میدهد معرفی میکند. جان کلاینبرگ و اوا تاردوس به روشی واضح و مستقیم به دانشآموزان آموزش میدهند تا مسائل را برای خودشان تجزیه و تحلیل و تعریف کنند. این برای تشخیص اینکه کدام اصول طراحی برای یک موقعیت خاص مناسب است. متن درک بیشتر فرآیند طراحی الگوریتم و درک نقش الگوریتمها در زمینه وسیعتر علوم کامپیوتر را تشویق میکند.\"--BOOK JACKET. ادامه مطلب... مقدمه: برخی مسائل معرف -- مبانی تجزیه و تحلیل الگوریتم ها -- نمودارها -- الگوریتم های حریصانه -- تقسیم و غلبه -- برنامه نویسی پویا -- جریان شبکه -- NP و غیر قابل حل محاسباتی -- PSPACE: دسته ای از مسائل فراتر از NP -- گسترش محدودیت های قابل حمل -- الگوریتم های تقریب -- جستجوی محلی -- الگوریتم های تصادفی -- پایان: الگوریتم هایی که برای همیشه اجرا می شوند
"Algorithm Design takes a fresh approach to the algorithms course, introducing algorithmic ideas through the real-world problems that motivate them. In a clear, direct style, Jon Kleinberg and Eva Tardos teach students to analyze and define problems for themselves, and from this to recognize which design principles are appropriate for a given situation. The text encourages a greater understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science."--BOOK JACKET. Read more... Introduction: Some representative problems -- Basics of algorithms analysis -- Graphs -- Greedy algorithms -- Divide and conquer -- Dynamic programming -- Network flow -- NP and computational intractability -- PSPACE: A class of problems beyond NP -- Extending the limits of tractability -- Approximation algorithms -- Local search -- Randomized algorithms -- Epilogue: algorithms that run forever
1 - Introduction: Some Representative Problems 1 1.1 A First Problem: Stable Matching 1 1.2 Five Representative Problems 12 Solved Exercises 19 Exercises 22 Notes and Further Reading 28 2 - Basics of Algorithm Analysis 29 2.1 Computational Tractability 29 2.2 Asymptotic Order of Growth 35 2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays 42 2.4 A Survey of Common Running Times 47 2.5 A More Complex Data Structure: Priority Queues 57 Solved Exercises 65 Exercises 67 Notes and Further Reading 70 3 - Graphs 73 3.1 Basic Definitions and Applications 73 3.2 Graph Connectivity and Graph Traversal 78 3.3 Implementing Graph Traversal Using Queues and Stacks 87 3.4 Testing Bipartiteness: An Application of Breadth-First Search 94 3.5 Connectivity in Directed Graphs 97 3.6 Directed Acyclic Graphs and Topological Ordering 99 Solved Exercises 104 Exercises 107 Notes and Further Reading 112 4 - Greedy Algorithms 115 4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 116 4.2 Scheduling to Minimize Lateness: An Exchange Argument 125 4.3 Optimal Caching: A More Complex Exchange Argument 131 4.4 Shortest Paths in a Graph 137 4.5 The Minimum Spanning Tree Problem 142 4.6 Implementing Kruskal\'s Algorithm: The Union-Find Data Structure 151 4.7 Clustering 157 4.8 Huffman Codes and Data Compression 161 * 4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm 177 Solved Exercises 183 Exercises 188 Notes and Further Reading 205 5 - Divide and Conquer 209 5.1 A First Recurrence: The Mergesort Algorithm 210 5.2 Further Recurrence Relations 214 5.3 Counting Inversions 221 5.4 Finding the Closest Pair of Points 225 5.5 Integer Multiplication 231 5.6 Convolutions and the Fast Fourier Transform 234 Solved Exercises 242 Exercises 246 Notes and Further Reading 249 6 - Dynamic Programming 251 6.1 Weighted Interval Scheduling: A Recursive Procedure 252 6.2 Principles of Dynamic Programming: Memoization or Iteration over Subproblems 258 6.3 Segmented Least Squares: Multi-way Choices 261 6.4 Subset Sums and Knapsacks: Adding a Variable 266 6.5 RNA Secondary Structure: Dynamic Programming over Intervals 272 6.6 Sequence Alignment 278 6.7 Sequence Alignment in Linear Space via Divide and Conquer 284 6.8 Shortest Paths in a Graph 290 6.9 Shortest Paths and Distance Vector Protocols 297 * 6.10 Negative Cycles in a Graph 301 Solved Exercises 307 Exercises 312 Notes and Further Reading 335 7 - Network Flow 337 7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 338 7.2 Maximum Flows and Minimum Cuts in a Network 346 7.3 Choosing Good Augmenting Paths 352 * 7.4 The Preflow-Push Maximum-Flow Algorithm 357 7.5 A First Application: The Bipartite Matching Problem 367 7.6 Disjoint Paths in Directed and Undirected Graphs 373 7.7 Extensions to the Maximum-Flow Problem 378 7.8 Survey Design 384 7.9 Airline Scheduling 387 7.10 Image Segmentation 391 7.11 Project Selection 396 7.12 Baseball Elimination 400 * 7.13 A Further Direction: Adding Costs to the Matching Problem 404 Solved Exercises 411 Exercises 415 Notes and Further Reading 448 8 - NP and Computational Intractability 451 8.1 Polynomial-Time Reductions 452 8.2 Reductions via \"Gadgets\": The Satisfiability Problem 459 8.3 Efficient Certification and the Definition of NP 463 8.4 NP-Complete Problems 466 8.5 Sequencing Problems 473 8.6 Partitioning Problems 481 8.7 Graph Coloring 485 8.8 Numerical Problems 490 8.9 Co-NP and the Asymmetry of NP 495 8.10 A Partial Taxonomy of Hard Problems 497 Solved Exercises 500 Exercises 505 Notes and Further Reading 529 9 - PSPACE: A Class of Problems beyond NP 531 9.1 PSPACE 531 9.2 Some Hard Problems in PSPACE 533 9.3 Solving Quantified Problems and Games in Polynomial Space 536 9.4 Solving the Planning Problem in Polynomial Space 538 9.5 Proving Problems PSPACE-Complete 543 Solved Exercises 547 Exercises 550 Notes and Further Reading 551 10 - Extending the Limits of Tractability 553 10.1 Finding Small Vertex Covers 554 10.2 Solving NP-Hard Problems on Trees 558 10.3 Coloring a Set of Circular Arcs 563 * 10.4 Tree Decompositions of Graphs 572 * 10.5 Constructing a Tree Decomposition 584 Solved Exercises 591 Exercises 594 Notes and Further Reading 598 11 - Approximation Algorithms 599 11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem 600 11.2 The Center Selection Problem 606 11.3 Set Cover: A General Greedy Heuristic 612 11.4 The Pricing Method: Vertex Cover 618 11.5 Maximization via the Pricing Method: The Disjoint Paths Problem 624 11.6 Linear Programming and Rounding: An Application to Vertex Cover 630 * 11.7 Load Balancing Revisited: A More Advanced LP Application 637 11.8 Arbitrarily Good Approximations: The Knapsack Problem 644 Solved Exercises 649 Exercises 651 Notes and Further Reading 659 12 - Local Search 661 12.1 The Landscape of an Optimization Problem 662 12.2 The Metropolis Algorithm and Simulated Annealing 666 12.3 An Application of Local Search to Hopfield Neural Networks 671 12.4 Maximum-Cut Approximation via Local Search 676 12.5 Choosing a Neighbor Relation 679 * 12.6 Classification via Local Search 681 12.7 Best-Response Dynamics and Nash Equilibria 690 Solved Exercises 700 Exercises 702 Notes and Further Reading 705 13 - Randomized Algorithms 707 13.1 A First Application: Contention Resolution 708 13.2 Finding the Global Minimum Cut 714 13.3 Random Variables and Their Expectations 719 13.4 A Randomized Approximation Algorithm for MAX 3-SAT 724 13.5 Randomized Divide and Conquer: Median-Finding and Quicksort 727 13.6 Hashing: A Randomized Implementation of Dictionaries 734 13.7 Finding the Closest Pair of Points: A Randomized Approach 741 13.8 Randomized Caching 750 13.9 Chernoff Bounds 758 13.10 Load Balancing 760 13.11 Packet Routing 762 13.12 Background: Some Basic Probability Definitions 769 Solved Exercises 776 Exercises 782 Notes and Further Reading 793 Epilogue: Algorithms That Run Forever 795 References 805 Index 815