دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: André Leschke
سری:
ISBN (شابک) : 9783658293918, 3658293918
ناشر: Springer Vieweg
سال نشر:
تعداد صفحات: 289
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Algorithm Concept for Crash Detection in Passenger Cars به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مفهوم الگوریتم برای تشخیص تصادف در خودروهای سواری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Acknowledgement\nContents\nList of Figures\nList of Tables\nList of Diagrams\nGlossary and List of Abbreviations\n Symbols\n Abbreviations\nAbstract\n1 Introduction\n 1.1 Motivation\n 1.2 Problems of the Work\n 1.3 Objectives\n 1.4 Research Fields and Objects of Investigation\n 1.5 Structure\nPart I\rState-of-the-Art\n 2 Basics of Traffic Safety\n 2.1 Traffic Safety in General\n 2.2 Vehicle Safety\n 2.3 Development of Passive Vehicle Safety over Time\n 2.3.1 Vehicle Structure and Restraint Systems\n 2.3.2 Electronics and Sensors\n 3 Vehicle Structure, Restraint and Electronic Systems\n 3.1 Vehicle Structure\n 3.2 Vehicle Interior\n 3.3 Restraint Systems\n 3.3.1 Seat Belts\n 3.3.2 Airbags\n 3.4 Electronic Systems for Crash Detection\n 3.4.1 Airbag Control Unit\n 3.4.2 Crash Sensors\n 3.4.3 Signal Processing\n 3.5 Airbag Algorithms\n 3.5.1 Legal Requirements, Consumer Test, Field Situation\n 3.5.2 Firing Requirements on Restraint Systems in Passenger Cars\n 3.5.3 Crash Detection Basics\n 3.5.4 Crash Algorithm Based on the Velocity Reduction of the Overall Vehicle\nPart II\rNew Algorithm Concept and\rSimulation Model\n 4 New Algorithm Concept\n 4.1 Motivation for a New Algorithm Approach\n 4.2 Local Component-Specific Loads\n 4.3 Dynamic Behaviour of Cars in Various Accident Constellations\n 4.3.1 Structure of the Front End, Body Structure and Components\n 4.3.2 Requirements on an Algorithm\n 4.3.3 Measurands and Coordinate Systems\n 4.4 Comparison of Different Acceleration Signals\n 4.4.1 Influence of Collision Speed on Deceleration Signals\n 4.4.2 Influence of the Collision Type on the Deceleration Signals\n 4.4.3 Influence of the Collision Direction on the Deceleration Signals\n 4.5 Duration of the Crash, Algorithm Runtime and Start Time\n 4.6 State-of-the-Art Algorithm Compared with the Formulated\rRequirements\n 5 Model for the Description of Threshold-Based\rAlgorithms\n 5.1 Structure of Algorithms\n 5.2 Classification Model of the Algorithm Block\n 5.3 Evaluation of the State-of-the-Art in the Classification Model\n 6 Simulation Model for Component-Specific Local Load\n 6.1 Structure of the Simulation Model\n 6.2 Signal Pre-Processing\nPart III\rMethods and Results\n 7 Algorithm for Local Component-Specific Load\n 7.1 Fundamentals of the Crash Intensity Algorithm\n 7.2 Crash Intensity as a New Input Variable for the CI Algorithm\n 8 First Degree of Freedom: Holdmax Threshold\n 8.1 Methodology for Selecting the Holdmax Threshold\n 8.1.1 Proximity Measures\n 8.1.2 Minkowski Metrics\n 8.2 Determination of the Optimum Holdmax Threshold\n 8.2.1 Criterion 1: Firing Times\n 8.2.2 Criterion 2: Misuse Stability\n 8.2.3 Criterion 3: Separability between Load Case Groups\n 8.2.4 Criterion 4: Separability within the Load Case Groups\n 8.2.5 Summary\n 9 Data Duality of Crash Intensity Values\n 9.1 Model for Assessing the Selectivity between the Load Case Groups\n 9.2 Evaluation of Selectivity for the 6 m/s Holdmax Threshold\n 9.3 Methodology for Evaluating the Data Correlations\n 9.4 Evaluation of CIT Values in Relation to Firing Time Requirements\n 9.5 Summary\n 10 Second Degree of Freedom: Selection of Sensors\n 10.1 Methodology for the Reduction of Strongly Correlating Sensors\n 10.2 Reduction of the Sensor Pool by Strongly Correlating Sensors\n 10.3 Methodology for Optimising the Sensor Data Pool\n 10.4 Application of the Methodology\n 10.5 Summary\n 11 Third Degree of Freedom: Application\n 11.1 Threshold Design Using a Double Regression Line as an Example\n 11.2 Comparison of Application Results with the State-of-the-Art\n 11.3 Robustness of the Algorithm\n 11.3.1 Variation of the Amplitude of the Measurement Signal\n 11.3.2 Optimization of the Application Threshold\n 11.3.3 Comparison of the Results with the State-of-the-Art\n 11.3.4 Variation of the Load Case Set\n 11.3.5 Firing Times of the New Load Cases\n 11.4 Summary\n 12 Algorithm Concept for the Classification of Load Cases\n 12.1 Methodology for Determining the Sensors for Classification\n 12.2 Classification of Wall 0° Load Cases\n 12.3 Classification of ODB Load Cases\n 12.4 Classification of Further Load Case Groups\n 12.5 Classification of the Hit Direction\n 12.6 Summary\n 13 Two-Stage Algorithm to Minimize the Number of\rSensors\n 13.1 Methodology\n 13.2 Maximum Reduction of Sensors\n 13.3 Classification of Pole and Truck Load Cases\n 13.4 Application of First Stage\n 13.5 Overall Result of a Two-Stage Algorithm\n 14 Validation of the Algorithm in Real Crash Tests\n 14.1 Experimental Programme\n 14.2 Measurement Setup\n 14.3 Test Results\n 15 Summary and Qutlook\n 15.1 Answers to the Research Questions\n 15.2 Outlook\n Bibliography\n Accompanying Publications