دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Amit Kumar Nayak (editor). Md Saquib Hasnain (editor)
سری:
ISBN (شابک) : 0128176407, 9780128176405
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 434
[426]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 Mb
در صورت تبدیل فایل کتاب Alginates in Drug Delivery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آلژینات ها در دارورسانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آلژیناتها در دارورسانی قوانین حیاتی، جنبههای اساسی و اساسی آلژیناتها را در علوم دارویی، بیوفارماکولوژی و در صنعت بیوتکنولوژی بررسی میکند. استفاده از پلیمرهای طبیعی در کاربردهای بهداشتی نسبت به پلیمرهای مصنوعی به دلیل زیست سازگاری پلیمرهای طبیعی، زیست تخریب پذیری، استخراج اقتصادی و در دسترس بودن آماده رواج بیشتری دارد. برای استفاده کامل و استفاده از پتانسیل آلژینات ها، این کتاب درک کاملی از سنتز، خالص سازی و خصوصیات آلژینات ها و مشتقات آنها را ارائه می دهد. این کتاب، تمام اطلاعات مرتبط در مورد آلژینات ها در مراقبت های بهداشتی، از جمله پیشرفت های اخیر در این زمینه را در یک جلد جمع آوری می کند.
این یک منبع بسیار مفید برای دانشمندان داروسازی، متخصصان مراقبت های بهداشتی و دانشمندانی است که به طور فعال درگیر هستند. در تولید محصولات دارویی و فرآیند توسعه پلیمر طبیعی حاوی دارورسانی، و همچنین دانشجویان کارشناسی ارشد و پژوهشگران فوق دکتری در علوم دارویی.
Alginates in Drug Delivery explores the vital precepts, basic and fundamental aspects of alginates in pharmaceutical sciences, biopharmacology, and in the biotechnology industry. The use of natural polymers in healthcare applications over synthetic polymers is becoming more prevalent due to natural polymers’ biocompatibility, biodegradability, economic extraction and ready availability. To fully utilize and harness the potential of alginates, this book presents a thorough understanding of the synthesis, purification, and characterization of alginates and their derivative. This book collects, in a single volume, all relevant information on alginates in health care, including recent advances in the field.
This is a highly useful resource for pharmaceutical scientists, health care professionals and regulatory scientists actively involved in the pharmaceutical product and process development of natural polymer containing drug delivery, as well as postgraduate students and postdoctoral research fellows in pharmaceutical sciences.
Cover Alginates in Drug Delivery Copyright Contents List of Contributors Preface 1 Alginates: sources, structure, and properties 1.1 Introduction 1.2 Sources of alginates 1.2.1 Algal sources 1.2.2 Bacterial sources 1.3 Molecular structure of alginates 1.4 Properties of alginates 1.4.1 Molecular weight 1.4.2 Optical rotation 1.4.3 Solubility 1.4.4 Dissociation 1.4.5 Gel formation 1.4.6 Biocompatibility 1.5 Conclusion References 2 Alginates as drug delivery excipients 2.1 Introduction 2.2 General properties 2.3 Drug delivery applications 2.3.1 Gelling agents 2.3.2 Uses in capsules and tablets for oral drug delivery 2.3.3 Uses in oral particulates (microparticles/beads) for drug delivery 2.3.4 Uses in nanoparticles for drug delivery 2.3.5 Uses in gastroretentive drug delivery systems 2.3.6 Uses in protein delivery 2.4 Conclusion References 3 Alginate-based hydrogels for drug delivery applications 3.1 Introduction 3.2 Alginate: sources, chemistry, and properties 3.2.1 Sources 3.2.2 Chemistry 3.2.3 Properties 3.2.3.1 Molecular weight 3.2.3.2 Solubility 3.2.3.3 Viscosity and rheology 3.2.3.4 Gelation 3.2.3.5 pH responsiveness 3.2.3.6 Biocompatibility 3.3 Preparations of alginate-based hydrogels 3.3.1 Physical hydrogels 3.3.1.1 Ionic cross-linking hydrogels 3.3.1.2 Hydrogen bonding 3.3.1.3 Polyelectrolyte complexation 3.3.1.4 Hydrophobic interaction 3.3.2 Chemical hydrogels 3.3.2.1 Cross-linking by aldehydes 3.3.2.2 Cross-linking by condensation reactions 3.3.2.3 Cross-linking by polymerization 3.4 Drug delivery applications 3.5 Conclusion References 4 Grafted alginates in drug delivery 4.1 Introduction 4.2 Chemical modifications and design strategies for alginate 4.3 Grafting derivatives of alginates 4.3.1 Alkylated derivatives of alginate 4.3.1.1 Alkane 4.3.1.1.1 Esterification 4.3.1.1.2 Reductive amination 4.3.1.2 N-Octylamine 4.3.1.2.1 Ugi reaction 4.3.1.2.2 Amidation 4.3.1.3 Oleoyl chloride 4.3.2 Alginate derivatives based on acrylates 4.3.2.1 Acrylic acid 4.3.2.2 Alkylated acrylate 4.3.2.2.1 Graft copolymerization 4.3.2.2.2 Reductive amination 4.3.2.3 Other acrylic polymers 4.3.3 Alginate derivatives based on acrylamides 4.3.3.1 Acrylamide 4.3.3.2 N-Isopropylacrylamide 4.3.3.2.1 Graft copolymerization 4.3.3.2.2 Amidation 4.3.3.3 Other derivatives of acrylamide 4.3.4 Alginate derivatives based on other vinyl monomers 4.3.5 Alginate derivatives based on acrylonitrile 4.3.6 Alginate derivatives based on various alcohols 4.3.6.1 Poly(ethylene glycol) 4.3.6.2 Amphiphilic cholesteryl 4.3.7 Alginate derivatives based on CDs 4.3.7.1 Amidation reaction 4.3.7.2 Cyanogen bromide method 4.3.7.3 Self-assembly 4.3.8 Derivatives based on alginate and other polymers 4.4 Uses of grafted alginates in drug delivery applications 4.4.1 Sustained release drug delivery 4.4.2 Transdermal drug delivery 4.4.3 Protein delivery 4.5 Limitations of grafted alginate for the use in drug delivery 4.6 Conclusion References 5 Alginate-based interpenetrating polymer networks for sustained drug release 5.1 Introduction 5.2 IPNs and their uses in drug delivery 5.3 Alginates 5.3.1 Sources and chemistry 5.3.2 General properties of alginates 5.4 The need for modifications alginates 5.5 Insights into the use of alginate-based IPNs for sustained release drug delivery 5.6 Conclusion References 6 Alginate nanoparticles in drug delivery 6.1 Introduction 6.2 Alginate 6.2.1 Sources 6.2.2 Structure and composition 6.2.3 Physicochemical properties 6.2.4 Biodegradability 6.3 Preparations of alginate nanoparticles for drug delivery 6.3.1 Spray drying technique 6.3.2 Ionic gelation technique 6.3.3 Emulsification technique 6.3.4 Covalent cross-linking technique 6.3.5 Polyelectrolyte complexation technique 6.3.6 Self-assembling technique 6.4 Recent advances in using alginate nanoparticles in drug targeting 6.5 Limitations for use of alginate in pharmaceutical nanotechnology 6.6 Future perceptive in using alginate particles as nanocarriers 6.7 Conclusion References 7 Biocomposites of Alginates in Drug Delivery 7.1 Introduction 7.2 Composites and biocomposites 7.3 Sources of alginates 7.4 Chemistry of alginate-structure 7.5 Properties of alginates 7.5.1 Solubility of alginates 7.5.2 Viscosity of alginate solutions 7.5.3 Gel formations 7.5.4 Biocompatibility of alginates 7.6 Various alginate-based biocomposites in drug delivery 7.6.1 Alginate-based biopolymeric biocomposites in drug delivery 7.6.2 Alginate-based biopolymeric-bioinorganic biocomposites in drug delivery 7.7 Conclusion References 8 Alginate–montmorillonite composite systems as sustained drug delivery carriers 8.1 Introduction 8.2 Alginates and related composites in drug delivery system 8.3 Montmorillonite 8.4 Alginate–MMT composite particles 8.4.1 MMT composite matrices with core–shell alginate–ghatti gum for stomach-specific flurbiprofen delivery 8.4.2 Alginate–MMT composite microspheres loaded with venlafaxine HCl 8.4.3 Alginate–MMT nanocomposite systems of irinotecan 8.4.4 Alginate–chitosan–MMT nanocomposites for 5-fluorouracil release 8.4.5 MMT–alginate nanocomposite beads loaded with carboplatin 8.4.6 MMT–alginate composite beads of diclofenac sodium 8.4.7 MMT–alginate nanocomposites of vitamins B1 and B6 8.5 Conclusion References 9 Ionotropically gelled alginate particles in sustained drug release 9.1 Introduction 9.2 Sustained drug release 9.3 Alginates 9.4 Ionotropic gelation of natural polysaccharides 9.5 Insights into the use of ionotropically gelled alginate-based particles for sustained release drug delivery 9.5.1 Ionotropically gelled alginate particles 9.5.2 Ionotropically gelled alginate-based beads prepared using blends of sodium alginate and second biopolymers 9.6 Conclusion References 10 Inorganic materials–alginate composites in drug delivery Abbreviations 10.1 Introduction 10.2 Alginates and alginate-based composites in drug delivery 10.3 Inorganic materials–alginate composites 10.3.1 Carbon nanotube-alginate composites 10.3.2 Montmorillonite-alginate composites 10.3.3 Calcium silicate -alginate composites 10.3.4 β-Tricalcium phosphate-alginate composites 10.3.5 Hydroxyapatite-alginate composites 10.4 Conclusion References 11 Particulate matrices of ionotropically gelled alginate- and plant-derived starches for sustained drug release 11.1 Introduction 11.2 Alginates 11.2.1 Sources 11.2.2 Structure 11.2.3 Properties 11.2.3.1 Aqueous solubility 11.2.3.2 Ionotropic cross-linking 11.2.3.3 Gel stability 11.2.3.4 Chemical degradation 11.3 Starches 11.3.1 Sources 11.3.2 Structure 11.3.3 Properties 11.3.3.1 Solubility 11.3.3.2 Crystallinity 11.3.3.3 Retrogradation 11.3.3.4 Biodegradation 11.3.4 Starches as pharmaceutical excipients in drug delivery 11.4 Ionotropically gelled alginate–plant-derived starches composite particles in drug delivery 11.4.1 Ionotropically gelled alginate–tapioca starch beads 11.4.2 Ionotropically gelled alginate–jackfruit seed starch beads 11.4.3 Ionotropically gelled alginate–potato starch microspheres and beads 11.4.4 Ionotropically gelled alginate–Assam Bora rice starch microbeads 11.5 Conclusion References 12 Polyelectrolyte complexes of alginate for controlling drug release 12.1 Introduction 12.2 Alginate 12.3 Polyelectrolyte complexes 12.4 Alginate–chitosan polyelectrolyte complexes for controlled drug release 12.5 Alginate-cationized gelatin polyelectrolyte complexes for controlled drug release 12.6 Alginate-cationic starch polyelectrolyte complexes for controlled drug release 12.7 Alginate-cationized poly-l-lysine polyelectrolyte complexes for controlled drug release 12.8 Conclusion References 13 Alginate-based hydrogel systems for drug releasing in wound healing 13.1 Introduction 13.2 Wounds 13.3 Classification of wounds 13.4 Wound healing 13.5 Wound dressing 13.6 Alginate as wound dressing material 13.6.1 Extraction of alginate 13.6.2 Chemistry of alginate 13.6.3 Biomedical properties and applications of alginate 13.6.4 Mechanisms of alginate as bioactive polymer in wound dressings 13.7 Alginate-based hydrogels as wound dressings and drug releasing for wound healing 13.8 Future prospects 13.9 Conclusion References 14 Alginate-based scaffolds for drug delivery in tissue engineering 14.1 Introduction 14.2 Scaffolds in tissue engineering 14.3 Scaffold fabrication techniques 14.3.1 Conventional scaffold fabrication techniques 14.3.2 Nonconventional scaffold fabrication techniques 14.4 Alginates 14.4.1 Sources 14.4.2 Chemical structure and conformation 14.5 Alginates used as tissue engineering scaffold materials 14.5.1 Alginate hydrogels 14.5.1.1 Ionic cross-linking 14.5.1.2 Covalent cross-linking 14.5.1.3 Thermal gelation 14.5.1.4 Cell cross-linking 14.5.1.5 Free radical polymerization 14.5.2 Microparticles 14.5.3 Porous scaffolds like sponges, foams, and fibers 14.5.3.1 Sponges 14.5.3.2 Foams 14.5.3.3 Fibers 14.6 Various alginate-based 14.7 Conclusion References 15 Use of alginates for drug delivery in dentistry 15.1 Introduction 15.2 History and origin of alginates 15.3 Chemistry of alginates 15.4 Alginates in dentistry 15.5 Insights into the use of alginate-based systems for drug delivery in dentistry 15.6 Conclusion References Index Back Cover