دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Illustrated
نویسندگان: Edmond A. Jonckheere
سری:
ISBN (شابک) : 0195093011, 9780195093018
ناشر: Oxford University Press
سال نشر: 1997
تعداد صفحات: 625
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Algebraic and Differential Topology of Robust Stability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توپولوژی جبری و افتراقی ثبات قوی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این کتاب، دو زمینه به ظاهر نامرتبط - توپولوژی جبری و کنترل قوی - با هم آورده شده است. این کتاب توپولوژی جبری / دیفرانسیل را از نقطه نظر برنامه گرا توسعه می دهد. این کتاب خواننده را در مسیری قرار میدهد که از یک مسئله پایداری قوی با انگیزه شروع میشود و ارتباط قضیه تقریب ساده و نحوه اجرای کارآمد آن را با استفاده از هندسه محاسباتی نشان میدهد. قضیه تقریب ساده به عنوان یک آغازگر برای مسائل توپولوژیکی جدی تر مانند انسداد برای گسترش نقشه نایکیست، نظریه K تثبیت قوی، و در نهایت توپولوژی دیفرانسیل نقشه نایکیست عمل می کند، که در توضیح عدم تداوم حاشیه پایداری نسبت به خطاهای گرد کردن این کتاب برای دانشجویان تحصیلات تکمیلی مهندسی و/یا ریاضیات کاربردی، محققان دانشگاهی و آزمایشگاههای دولتی مناسب است.
In this book, two seemingly unrelated fields -- algebraic topology and robust control -- are brought together. The book develops algebraic/differential topology from an application-oriented point of view. The book takes the reader on a path starting from a well-motivated robust stability problem, showing the relevance of the simplicial approximation theorem and how it can be efficiently implemented using computational geometry. The simplicial approximation theorem serves as a primer to more serious topological issues such as the obstruction to extending the Nyquist map, K-theory of robust stabilization, and eventually the differential topology of the Nyquist map, culminating in the explanation of the lack of continuity of the stability margin relative to rounding errors. The book is suitable for graduate students in engineering and/or applied mathematics, academic researchers and governmental laboratories.
Preface Simplicial Versus Singular Homology Cubes or Simplexes? Style Organization How to read this book Prerequisites Bibliographical Guide Acknowledgements Contents List of Figures List of Symbols 1. Prologue I. SIMPLICIAL APPROXIMATION AND ALGORITHMS 2. Robust Multivariable Nyquist Criterion 2.1 Multivariable Nyquist Criterion 2.2 Robust Multivariable Nyquist Criterion 2.3 Uncertainty Space 2.4 "Punctured" Uncertainty Spaces 2.5 Compactification of Imaginary Axis 2.6 Horowitz Supertemplate Approach 2.6.1 No Imaginary-Axis Open-Loop Poles 2.6.2 Imaginary-Axis Open-Loop Poles 2.7 Crossover 2.8 Mapping into Other Spaces 3. A Basic Topological Problem 3.1 The Boundary Problem 3.2 Topology for Boundary and Continuity 3.3 Mathematical Formulation of Boundary Problem 3.4 Example (Continuous Fraction Criterion) 3.5 Example (Kharitonov) 3.6 Example (Real Structured Singular Value) 3.7 Example (Brouwer Domain Invariance) 3.8 Example (Covering Map) 3.9 Example (Holomorphic Mapping) 3.10 Example (Proper Mapping) 3.11 Example (Conformal Mapping) 3.11.1 Locally Connected Boundary 3.11.2 General Boundary 3.12 Examples (Horowitz) 3.12.1 Uncertain Gain/Real Pole 3.12.2 Uncertain Pole/Zero Pair 3.13 Example (Functions on Polydisks) 3.14 Several Complex Variables 3.15 Example (Plurisubharmonic functions) 3.16 Example (Proper Holomorphic and Biholomorphic Maps) 3.17 Example (Whitney's Root System) 3.17.1 No Degree Uncertainty 3.17.2 Uncertain Degree 4. Simplicial Approximation 4.1 Simplexes, Complexes, and Polyhedra 4.2 Abstract Complexes 4.3 Alexandroff Theorem 4.4 Simplicial Approximation—Point Set Topology 4.5 Simplicial Map—Algebra 4.5.1 Simplicial Theory 4.5.2 Semisimplicial Theory 4.6 Computational Issues 4.7 Relative Simplicial Approximation 4.8 Cell Complexes and Cellular Maps 4.9 Historical Notes 5. Cartesian Product of Many Uncertainties 5.1 Prismatic Decomposition 5.1.1 Simplicial Uncertainty-Frequency Product 5.1.2 Semisimplicial Conceptualization 5.2 Boundary of Cartesian Product 5.2.1 Simplicial Approach 5.2.2 Semisimplicial Approach 5.3 Simplicial Combinatorics of Cube 5.4 Q-Triangulation 5.5 Combinatorial Equivalence 5.6 Flatness 6. Computational Geometry 6.1 Delaunay Triangulation of Template 6.2 Simplicial Edge Mapping 6.3 The SimplicialVIEW Software 6.3.1 Coarse Initial Refinement 6.3.2 Voronoi Diagram and Delaunay Triangulation 6.3.3 Refinement and Point Location 6.3.4 Checking Simplicial Property 6.3.5 Identifying Simplex Containing the Origin 6.3.6 Inverse Image 6.4 Numerical Stability, Flatness, and Conditioning 6.5 Making Map (Locally) Simplicial 6.6 Procedure 7. Piecewise-Linear Nyquist Map 7.1 Piecewise-Linear Nyquist Map 7.1.1 A Linear Program 7.1.2 Polyhedral Crossover 7.2 From Piecewise-Linear to Simplicial Map 7.2.1 Simplicial Approximation to Piecewise-Linear Map 7.2.2 Making Piecewise-Linear Map Simplicial 7.3 Strict Linear Complementarity 8. Game of the Hex Algorithm 8.1 2-D Hex Board 8.2 n-D Hex Board 8.3 Combinatorial Equivalence 8.4 Two-Dimensional Hex Game Algorithm 8.4.1 Primal 8.4.2 Dual 8.4.3 Complexity 8.5 Three-Dimensional Hex Game Algorithm 8.5.1 Dual 8.5.2 Primal 8.6 Higher-Dimensional Hex Games 9. Simplicial Algorithms 9.1 Simplicial Algorithms Over 2-D Uncertainty Space 9.1.1 Integer Labeling 9.1.2 Searching—Fundamental Graph Lemma 9.1.3 Grid Refinement and Sperner's Lemma 9.1.4 Vector Labeling 9.1.5 Textbook Example 9.2 Simplicial Algorithms Over 3-D Uncertainty Space 9.2.1 Algorithm 9.2.2 A 2-Torus Example 9.2.3 Example 9.2.4 Algebraic Curve Interpretation 9.3 Relative Uncertainty Complex 9.4 Simplicial Labeling Map 9.4.1 Abstract Label Complex 9.4.2 (Strong) Deformation Retract of Template 9.5 Algorithm—Integer Search 9.6 Algorithm—Vector Labeling Search II. HOMOLOGY OF ROBUST STABILITY 10. Homology of Uncertainty and Other Spaces 10.1 Simplicial Homology 10.1.1 Homology Groups 10.1.2 Homology Group Homomorphism 10.1.3 Computation 10.2 Semisimplicial Homology 10.3 Homology of a Chain Complex 10.4 Homotopy Invariance 10.4.1 Chain Homotopy 10.4.2 Acyclic Carriers 10.4.3 Invariance Under Homotopy 10.4.4 Homotopy Equivalence 10.5 Homology of Product of Uncertainty 10.5.1 Eilenberg-Zilber Theorem 10.5.2 Künneth Theorem 10.5.3 Remark 10.5.4 Application—Uncertainty-Frequency Product 10.5.5 Application—Uncertainty Torus 10.6 Uncertainty Manifold—Mayer -Vietoris Sequence 10.6.1 Application—Homology of Special Unitary Uncertainty 10.7 Relative Homology Sequence 10.8 More Sophisticated Homology Computation 11. Homology of Crossover 11.1 Combinatorial Homology of Crossover 11.2 Projecting the Crossover 12. Cohomology 12.1 Simplicial Cohomology 12.1.1 Cohomology Groups 12.1.2 Cohomology Group Homomorphism 12.1.3 Cup Product 12.1.4 Cohomology of Product Space 12.2 de Rham Cohomology 12.2.1 Cohomology of Differential Forms 12.2.2 Pull-Back 12.2.3 Wedge Product 13. Twisted Cartesian Product of Uncertainties 13.1 Fiber Bundle 13.1.1 Basic Definitions and Concepts 13.1.2 Bundle Morphisms 13.1.3 Clutching 13.1.4 Cross Section 13.1.5 Bundle Interpretation of Kharitonov's Theorem 13.1.6 Principal Bundle 13.1.7 Tangent Bundle 13.1.8 Elementary Homotopy Theory of Bundles 13.1.9 Fiber Bundle Interpretation of Doležal's Theorem 13.2 Semisimplicial Bundles and Twisted Cartesian Product 13.2.1 Background 13.2.2 Semisimplicial Bundle 13.2.3 Twisted Cartesian Product 13.2.4 Example 13.2.5 Cross Section 13.2.6 Commutativity 13.2.7 Twisted Tensor Product 13.3 Nyquist Fibration 13.4 Semisimplicial Fibration 13.5 Summary 14. Spectral Sequence of Nyquist Map 14.1 Homology Spectral Sequence 14.1.1 Graduation and Filtration 14.1.2 Filtration of Cycle and Boundary Groups 14.1.3 Filtration of Homology Group 14.1.4 Successive Approximation 14.1.5 Initialization 14.1.6 Convergence 14.2 Example (Spectral Sequence of a Matrix) 14.3 Spectral Sequence of Geometric System Theory 14.4 Cohomology Spectral Sequence 14.5 Zeeman Dihomology Spectral Sequence of Simplicial Nyquist Map 14.6 Leray-Serre Spectral Sequence 14.7 Semisimplicial Serre Spectral Sequence of Nyquist Map 14.7.1 Twisted Cartesian Product Spectral Sequence 14.7.2 Twisted Tensor Product Spectral Sequence 14.8 Eilenberg-Moore Spectral Sequence 14.8.1 Contractible Template—Open-Loop Stable Case 14.8.2 Uncontractible Template III. HOMOTOPY OF ROBUST STABILITY 15. Homotopy Groups and Sequences 15.1 Homotopy Groups 15.2 Homotopy Group Homomorphism 15.3 Homotopy Groups of Spheres 15.4 Basic Obstruction Result 15.5 Homotopy Sequence of Nyquist Fibration 15.5.1 Exact Homotopy Sequence 15.6 Corollaries of Exact Homotopy Sequence 15.7 Historical Notes 16. Obstruction to Extending the Nyquist Map 16.1 Statement of Nyquist Extension Problem 16.2 Obstruction to Extending a General Map 16.2.1 Path Connectedness of Range 16.2.2 Absolute Obstruction to Extension 16.2.3 Relative Obstruction to Extension 16.3 Obstruction to Extending Nyquist Map 16.3.1 Absolute Results 16.3.2 Relative Results 16.4 Weak Converse 16.5 Computation of Homotopy Class 16.5.1 Piecewise-Linear Nyquist Map 16.5.2 Comparison with Part I 16.5.3 Relative Results 16.6 Homotopy Extension 16.7 Homotopy Extension and Edge Tests 16.8 Appendix—Obstruction to Cross Sectioning 17. Homotopy Classification of Nyquist Maps 17.1 Fundamental Classification Result 17.2 Classification of Maps to Spheres 17.3 Elementary Proof of Main Result 17.4 Cohomology of Product of Uncertainty 17.4.1 Multivariable Phase Margin 17.4.2 Special Orthogonal Perturbation 17.5 Formal Classification 18. Brouwer Degree of Nyquist Map 18.1 Orientation 18.2 Combinatorial Degree 18.3 Analytical Degree 18.4 Homological Degree of Maps Between Spheres 18.5 Simple Examples 18.5.1 Degree of a Linear Map 18.5.2 Degree of a Holomorphic Function 18.5.3 Degree of Real Polynomial Map 18.5.4 Application to Robust Stability 18.6 Application (Index of Vector Field) 18.7 (Co)homological Degree of Maps to Spheres 18.7.1 Degree of Nyquist-Related Map 18.7.2 Degree of Maps from Manifolds to Spheres 18.7.3 A Counterexample 18.8 Degree Proof of Superstrong Sperner Lemma 18.9 Degree of Maps Between Pseudomanifolds 18.10 Homotopy Collapse of Template 18.11 Continuation or Embedding Methods 18.12 Historical Notes 19. Homotopy of Matrix Return Difference Map 19.1 Matrix Return Difference 19.2 General Linear versus Unitary Groups 19.3 Homotopy Groups of GL 19.3.1 Stable Homotopy (2n_l >= n) 19.3.2 Unstable Homotopy (2n_l < n) 19.4 Degree (Stable Homotopy Case) 19.4.1 2n_l = n 19.4.2 2n_l > n 19.5 Differential Degree (Stable and Unstable Homotopy) 19.5.1 Cohomology of General Linear Group 19.5.2 de Rham Cohomology of Differential Forms 19.5.3 Invariant Differential Forms on GL 19.5.4 Invariant Differential Forms on U 19.5.5 Example (SO Group) 19.5.6 Pull-Back 19.5.7 Degree 19.5.8 Connection with Analytical Degree 19.6 Example (the Principle of Argument) 19.7 Example (Mapping into SO) 19.7.1 Degree 1 Map 19.7.2 Degree 2 Map 19.8 Example (Brouwer Degree) 19.9 Example (McMillan Degree) 19.10 Obstruction to Extending GL-Valued Nyquist Map 20. K-Theory of Robust Stabilization 20.1 Return Difference Operator 20.1.1 Open-Loop Stable, Discrete-Time Systems 20.1.2 Toeplitz Operators 20.1.3 Open-Loop Unstable Systems 20.1.4 Closed-Loop Stability 20.2 Index of Fredholm Operators 20.3 Index of Fredholm Toeplitz Operators 20.4 Index of Fredholm Family 20.4.1 Constant Cokernel Dimension 20.4.2 Vector Bundle Formulation 20.5 K-Group 20.5.1 Complex Bundle over Uncertainty Space 20.5.2 Equivalent Bundles 20.5.3 trivial bundle 20.5.4 Whitney Sum 20.5.5 Grothendieck Construction 20.5.6 K-Group 20.5.7 K-Group Homomorphism 20.6 Index of Uncertain Return Difference Operator 20.7 Open-Loop Unstable Return Difference Operator 20.8 Reduced K-Groups 20.9 Unitary Approach to K-Theory 20.9.1 Chern Classes and Character 20.10 Higher K-Groups and Bott Periodicity 20.11 Index for Fredholm Toeplitz Family 20.12 Atiyah-Hirzebruch Spectral Sequence 20.13 KO-Theory of Real Perturbation 20.14 KR-Theory of Real Perturbation 20.15 Connection with Algebraic K-Theory IV. DIFFERENTIAL TOPOLOGY OF ROBUST STABILITY 21. Singularity over Compact Differentiable Uncertainty Manifolds 21.1 Compact Differentiable Uncertainty Manifold 21.2 Singularity Analysis of Nyquist Map 21.2.1 Variational Interpretation of Template Boundary 21.2.2 Basic Facts of Morse Theory 21.2.3 Degeneracy Phenomena 21.2.4 Three Approaches to Singularity Analysis 21.3 Nyquist Curve as Critical Value Plot 21.4 Nash Functions 21.5 Sard's Theorem 21.6 Critical Values Plots 21.6.1 The Problem 21.6.2 Classification of Critical Points by Their Codimensions 21.6.3 Isotopy 21.6.4 Stratification of Space of Differentiable Functions 21.6.5 Stratification of the Space of Morse Functions 21.6.6 Local Properties of Family 21.6.7 Global Properties of Family 21.6.8 Effect of Variation of "Certain" Parameters 21.7 Loops of Critical Points 21.8 Degree Approach to Critical Points 21.9 Vector Field Approach to Critical Points 21.10 Quadratic Differential of Nyquist Map 21.11 Thom-Boardman Singularity Sets 21.12 The Case of Two Uncertain Parameters 21.13 Template Boundary Revisited 21.14 Example I 21.15 Example II 21.16 Cell Decomposition 22. Singularity Over Stratified Uncertainty Space 22.1 (Whitney) Stratified Uncertainty Space 22.2 Stratified Morse Theory 22.3 Boundary Singularity 22.4 Application to Mapping Theorems 23. Structural Stability of Crossover 23.1 Jet Space 23.2 Whitney Topology 23.2.1 C^0 Case 23.2.2 C^k and C^\infty Cases 23.3 (Elementary) Transversality 23.4 Singularity Sets Revisited 23.4.1 Iterated Jacobi Extensions 23.4.2 Jacobi Extension Definition of Singularity Sets 23.4.3 Jacobian of a Set of Functions 23.5 Universal Singularity Sets 23.5.1 Total Jacobi Extension 23.5.2 Universal Singularity Sets 23.5.3 (Strong) Transversality 23.6 Stability of Nyquist Map 23.7 Infinitesimal Stability 23.8 Local Infinitesimal Stability 23.9 Stability of Whitney Fold and Cusp 23.10 Example (Simple) 23.11 Example (Whitney Fold) 23.12 Example (Phase Margin) 23.13 Example (Uncertain Degree) 23.14 Example (Pole/Zero Cancellation) 23.15 Structural Stability of Crossover 23.16 The Counter-Example V. ALGEBRAIC GEOMETRY OF CROSSOVER 24. Geometry of Crossover 24.1 Crossover as a Real Algebraic Set 24.2 Triangulation of Real Algebraic Sets 24.3 Local Euler Characteristic of Real Algebraic Crossover Set 24.4 Betti Numbers of Real Algebraic Crossover Set 24.5 Algebraic Crossover Curve 24.6 Example 25. Geometry of Stability Boundary 25.1 Tarski-Seidenberg Elimination 25.2 Complexity 25.3 Example VI. EPILOGUE 26. Epilogue VII. APPENDICES A. Homological Algebra of Groups A.1 Abelian Groups and Homomorphisms A.2 Chain Complexes A.3 Tensor Product A.4 Categories and Functors A.5 Exact Sequences A.6 Free Resolution A.7 Connecting Morphism A.8 Torsion Product A.9 Universal Coefficient Theorem A.10 Künneth Formula B. Matrix Analysis of Integral Homology Groups B.1 Matrix Computation of Homology Groups B.2 Hopf Trace Theorem C. Homological Algebra of Modules C.1 Modules C.1.1 Modules and Projective Modules C.1.2 Projective Resolution C.1.3 Tensor Product C.1.4 Higher Torsion Products C.2 Algebra C.3 Differential Graded Modules C.3.1 dg Modules C.3.2 dg Algebra C.3.3 dg Module Over dg Algebra C.3.4 Tensor Product C.3.5 Torsion Product D. Algebraic Singularity Theory D.1 Weierstrass Preparation Theorem D.1.1 Example (Root-Locus Breakaway Point) D.1.2 Proofs D.2 Malgrange Preparation Theorem D.2.1 Proofs D.3 Jets and Germs D.4 Rings and Ideals of Functions D.5 Formal Inverse Function Theorem D.6 Local Ring of a Map D.7 Modules Over Rings of Functions D.8 Generalized Malgrange Preparation Theorem D.9 Jacobi Ideal, Codimension, and Determinacy D.10 Universal Unfolding Bibliography 1-15 16-33 34-51 52-69 70-84 85-101 102-119 120-138 139-154 155-171 172-189 190-207 208-225 226-239 Index