دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Sachin Kumar Mandotra, Atul Kumar Upadhyay, Amrik Singh Ahluwalia سری: ISBN (شابک) : 9789811575174, 9789811575181 ناشر: Springer سال نشر: 2020 تعداد صفحات: 384 [377] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Algae: Multifarious Applications for a Sustainable World به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جلبک: کاربردهای متنوع برای جهانی پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مهیج کاربردهای متنوعی از منابع تجدیدپذیر ریزجلبکی را برای پاسخگویی به تقاضاهای مدرن برای انرژی و محصولات با ارزش افزوده ارائه می دهد. همچنین به طور جامع نقش جلبک ها را در استراتژی های تصفیه فاضلاب پایدار و مقرون به صرفه توصیف می کند و آخرین تحقیقات در مورد، پیشرفت ها و ارتباط بیوتکنولوژیکی جلبک ها در زمینه های انرژی زیستی، زیست پالایی، داروسازی، مواد غذایی و اقتصاد سبز را برجسته می کند. این کتاب با ارائه اطلاعات گسترده در مورد تولید انرژی زیستی، استراتژی های مدیریت، توسعه دارو، محصولات غذایی و اقتصاد مبتنی بر زیست با استفاده از جلبک ها در سطح تجاری، به شکاف های موجود در زمینه های انرژی زیستی، مدیریت زباله، سلامت و اقتصاد می پردازد. این کتاب محققان را با نوآوری های کلیدی و نوظهور در زمینه تحقیقات زیست شناسی جلبکی آشنا می کند و به سیاست گذاران، محیط بانان، دانشمندان، دانشجویان و متفکران جهانی در تعریف اهداف توسعه پایدار برای آینده کمک می کند. بر این اساس، مطالعه بسیار مهمی برای محققان و دانشجویان در علوم محیطی، علوم زیستی و شیمی، کارشناسان بخش انرژی و سیاستگذاران است.
This exciting book presents diverse applications of microalgal renewable resources to meet modern demands for energy and value-added products. It also comprehensively describes the role of algae in sustainable and cost-effective wastewater treatment strategies, and highlights the latest research on, advances in and biotechnological relevance of algae in the areas of bioenergy, bioremediation, pharmaceuticals, nutraceuticals and green economy. The book addresses gaps in the fields of bioenergy, waste management, health and economy by providing broad information on bioenergy production, management strategies, drug development, nutraceuticals products and biobased economy using algae at the commercial level. The book introduces researchers to key and emerging innovations in the field of algal biology research and will assist policymakers, environmentalists, scientists, students and global thinkers in defining sustainable developmental goals for the future. Accordingly, it is an extremely important read for researchers and students in the environmental sciences, life sciences and chemistry, experts in the energy sector and policymakers alike.
Preface Contents About the Editors 1: Valorization of Wastewater via Nutrient Recovery Using Algae-Based Processes 1.1 Introduction 1.2 Current-Status of Nutrient Recovery Using Microalgae-Based Processes 1.2.1 Municipal Wastewater 1.2.2 Agricultural and Industrial Wastewater 1.3 Algae-Microbe Interaction in Wastewater and Its Significance 1.4 Perspectives of Wastewater-Grown Microalgal Biomass 1.4.1 Bioenergy 1.4.2 Biofertilizer 1.4.3 Food and Feed 1.5 Future Outlook and Conclusions References 2: Constructed Wetland and Microalgae: A Revolutionary Approach of Bioremediation and Sustainable Energy Production 2.1 Introduction 2.2 Constructed Wetland 2.2.1 Role of Plants in CW 2.2.2 Designing of Constructed Wetland 2.2.3 Treatment and Operation 2.3 Algae and Bioremediation 2.4 Strategies of Bioremediation 2.4.1 Phytoextraction: (Phytoaccumulation, Phytoabsorption, or Phytosequestration) 2.4.2 Phytodegradation 2.4.3 Phytostabilization 2.4.4 Rhizofiltration 2.4.5 Phytovolatilization 2.5 Algae as Source of Renewable Energy 2.6 Extraction and Production of Lipid by Algae 2.6.1 Folch Extraction Method 2.6.2 Bligh and Dyer Method 2.6.3 Microwave Assisted Extraction 2.6.4 Ultrasound Assisted Extraction 2.7 Potential Aspects and Future Prospects of Algae and Constructed Wetland 2.8 Conclusion References 3: Mitigation of Heavy Metals Utilizing Algae and Its Subsequent Utilization for Sustainable Fuels 3.1 Introduction 3.2 What Are Heavy Metals? 3.2.1 Entry of Heavy Metals into Ecosystem 3.2.1.1 Mercury 3.2.1.2 Lead 3.2.1.3 Arsenic 3.3 Impact of Heavy Metals on Microorganisms 3.4 Impact of Heavy Metals on Plants 3.5 Impact of Heavy Metal on Humans 3.5.1 Mercury 3.5.2 Lead 3.5.3 Arsenic 3.6 Algae as a Potential Candidate for Bioremediation 3.6.1 Defence Mechanism of Algae Against Heavy Metals 3.6.2 Effect of pH on Biosorption 3.6.3 Effect of Temperature on Biosorption 3.6.4 Impact of Contact Time 3.7 Algal Biofuel Production 3.7.1 Cultivation of Algae 3.7.1.1 Open Raceway Ponds 3.7.1.2 Photobioreactor 3.7.2 Harvesting Methods 3.7.2.1 Chemical Flocculation 3.7.2.2 Microbial Flocculation 3.7.2.3 Electroflocculation 3.7.3 Oil Extraction 3.7.4 Transesterification of Algal Oil References 4: Adaptive and Tolerance Mechanism of Microalgae in Removal of Cadmium from Wastewater 4.1 Introduction 4.2 Sources of Cadmium Pollution 4.2.1 Natural Sources of Cadmium Emission 4.2.2 Anthropogenic Sources of Cadmium Emission 4.3 Microalgae: A Potential Candidate for Cadmium Mitigation 4.4 Mechanism of Cadmium Remediation by Microalgae 4.4.1 Physiological and Morphological Response of Microalgae to Cadmium Toxicity 4.5 Indicators of Cadmium Stress in Microalgae: Enzymatic and Non-enzymatic Markers 4.6 Integration of Cadmium Mitigation with Bioenergy Production 4.7 Conclusions and Future Perspectives References 5: Algae as Miniature Wastewater Scavengers 5.1 Introduction 5.2 Wastewater Composition 5.2.1 Sewage Microbial Composition 5.3 Methods of Treatment 5.3.1 Conventional Method 5.3.2 Preliminary Sewage Treatment 5.3.3 Primary Sewage Treatment 5.3.4 Secondary Sewage Treatment 5.3.5 Tertiary Sewage Treatment 5.4 Microalgal Wastewater Treatment 5.4.1 Heavy Metal Removal by Algae 5.5 Algal Production and Utilization of Algal Biomass 5.6 Conclusion References 6: Parametric Modeling and Optimization of Phycoremediation of Cr(VI) Using Artificial Neural Network and Simulated Annealing 6.1 Introduction 6.2 Materials and Methods 6.2.1 Isolation, Identification, and Cultivation of Isolated Strain 6.2.2 Growth Study of Microalgal Isolate 6.2.3 Characterization of Collected Microalgal Strain 6.2.4 Effect of Input Variables on Bioremoval of Cr(VI) Using OFAT Approach in Batch Study 6.2.5 Variation of Bioremoval of Cr(VI) and Production of Biomass and Biomolecules with Time at Different Operating Conditions 6.3 Theoretical Analysis 6.3.1 Artificial Intelligence Based ANN Modeling 6.3.2 Application of Simulated Annealing (SA) Optimization 6.3.2.1 Simulated Annealing at a Glance 6.3.2.2 Algorithm of SA 6.4 Results and Discussions 6.4.1 Growth Study of Isolated Algal Strain 6.4.2 Characterization and Identification of Chlorococcum Sp. 6.4.3 Effect of Input Variables on Bioremoval of Cr(VI) Using OFAT Approach in Batch Study 6.4.3.1 Effect of IC 6.4.3.2 Effect of pH 6.4.3.3 Effect of IS 6.4.4 Variation of Bioremoval of Cr(VI) and Production of Biomass and Biomolecules with Time at Different Operating Conditions 6.4.5 ANN Model 6.4.6 Simulated Annealing Optimization 6.5 Conclusion References 7: An Insight into the Potential Application of Microalgae in Pharmaceutical and Nutraceutical Production 7.1 Introduction 7.2 Microalgal and Their Bioactive Compounds 7.3 Pharmaceutical and Nutraceutical Properties of Microalgal Compounds 7.3.1 Anticancer Properties 7.3.2 Antioxidant Properties 7.3.3 Antihypertensive Properties 7.3.4 Anti-Obesity Properties 7.3.5 Anti-Inflammatory Properties 7.3.6 Anti-Cardiovascular Disease Properties 7.3.7 Antimicrobial Properties 7.3.8 Antidiabetic Properties 7.3.9 Alzheimer´s Disease 7.3.10 Functional Materials in Cosmetics 7.4 Strategies of Profitable Production of Microalgae Biomass for Pharmaceutical and Nutraceutical products Production 7.4.1 Strain Selection and Improvement 7.4.2 Suitability of Medium 7.4.3 Conditions Optimization 7.5 Extraction of Pharmaceutical and Nutraceutical Products from Algal Biomass 7.5.1 Supercritical Fluid Extraction 7.5.2 Ultrasound 7.5.3 Microwave 7.5.4 Ionic Liquids (I.L.S) 7.5.5 Combined Technique 7.6 Capital and Operational Expenditures of Pharmaceutical and Nutraceutical Products from Microalgae 7.7 The Commercial Potential of Algae-Based Pharmaceutical and Nutraceutical 7.8 Safety and Regulatory Issues of Algal Pharmaceutical and Nutraceutical Products 7.9 Future Prospects 7.10 Conclusion References 8: The Budding Potential of Algae in Cosmetics 8.1 Introduction 8.1.1 Structure, Function, and Composition of the Skin 8.1.2 The Cosmetic Industry 8.1.3 The Need for Natural Substitutes 8.2 Algal Species Used in Cosmetic Industry 8.2.1 Microalgae 8.2.2 Macroalgae 8.2.2.1 Green Algae 8.2.2.2 Red Algae 8.2.2.3 Brown Algae 8.3 Use of Algae in Cosmetic Industry 8.3.1 Industrial Applications of Algae 8.3.2 Extracts of Algae as Ingredient in Cosmetics 8.4 Algal Pigments Used in Cosmetic Industry 8.4.1 Algae as Moisturizing Agent 8.4.2 Algae as Thickening Agent 8.4.3 Algae in Hair Care 8.5 Other Benefits of Algae 8.5.1 Antimicrobial Properties 8.5.2 Skin Anti-Aging 8.5.3 Skin Whitening 8.5.4 UV Protection 8.6 Thalassotherapy: An Algal Treatment 8.7 Conclusion References 9: Food Supplements Formulated with Spirulina 9.1 Introduction 9.2 Morphology of Spirulina 9.3 Functions of Spirulina 9.3.1 Nutritional Function 9.3.2 Antioxidant Function 9.4 Domestic and Commercial Cultivation of Spirulina 9.4.1 Domestic Cultivation 9.4.2 Important Parameters 9.4.3 Climatic Factors 9.4.4 Commercial Cultivation 9.4.5 Spirulina Harvesting 9.4.6 Drying 9.5 Economic Importance and Commercial Value of Spirulina 9.6 Business Opportunities 9.6.1 Global Spirulina Market 9.6.2 Commercial Spirulina Innovative Products 9.7 Challenges in Spirulina Production 9.8 Environmental Benefits of Spirulina 9.9 Conclusion References 10: Fucoxanthin Production from Diatoms: Current Advances and Challenges 10.1 Introduction 10.2 Fucoxanthin Biosynthesis in Diatoms 10.3 Abiotic Factors Affecting Fucoxanthin Production 10.4 Genetic Engineering Strategies to Improve Fucoxanthin Productivity 10.5 Conclusion and Future Perspectives References 11: Liquid Biofuels from Algae 11.1 Introduction 11.2 Conversion Technologies and Products 11.2.1 Lipid Extraction 11.2.2 Hydrothermal Liquefaction 11.3 Upgrading Technologies for Fungible Biofuels 11.3.1 Transesterification of Lipids 11.3.2 Catalytic Upgrading 11.3.3 Thermal Upgrading 11.4 Co-processing of Algae Derived Bio-Oils 11.5 Resource Requirements 11.6 Financial Feasibility 11.6.1 Capital and Operating Costs 11.6.2 Cost Breakdown 11.6.3 Cost Drivers 11.6.4 Minimum Fuel Selling Price 11.7 Commercialization Efforts References 12: UV-B Coupled Lipid Induction: A Strategy Towards Economical Biofuel Production Through Algae 12.1 Introduction 12.2 Impact of UV-B Radiation on Algae 12.3 UV-B and Photosynthetically Active Radiation (PAR) 12.4 Microalgae and Lipid Production 12.4.1 Strategies of UV-B Based Lipid Alteration in Microalgae 12.4.2 Defense Responses in Algae Under UV-B Radiation 12.5 Conclusion and Future Prospects References 13: Microalgae Mediated Nanomaterials Synthesis 13.1 Introduction 13.2 Different Methods of Nanomaterials Synthesis 13.2.1 Conventional Physical and Chemical Synthesis Methods 13.2.2 Biological/Green Methods 13.2.2.1 Plants Assists Synthesis Method 13.2.2.2 Bacteria Assists Synthesis Method 13.2.2.3 Fungi Assists Synthesis Method 13.2.2.4 Yeast Assists Synthesis Method 13.2.2.5 Actinomycetes Assists Synthesis Method 13.3 Algae Mediated Nanoparticle Synthesis 13.3.1 Metallic Nanoparticles Synthesis Using Algae 13.3.2 Metal Salt Nanoparticles Synthesis Using Algae 13.3.3 Metal Oxide Nanoparticles Synthesis Using Algae 13.4 Characterization of the Nanomaterials 13.5 Application of Nanoparticles Synthesized by Microalgae 13.6 Conclusions and Future Prospect References 14: Algae-Mediated Biological Synthesis of Nanoparticles: Applications and Prospects 14.1 Introduction 14.2 Classification of Nanoparticles 14.3 Types of Metallic Nanomaterials (NPs) 14.4 Synthesis of Nanoparticles 14.4.1 Intracellular Mode of Nanoparticles Synthesis 14.4.2 Extracellular Mode of Nanoparticles Synthesis 14.5 Green Microalgae and NPs Synthesis 14.5.1 Silver Nanoparticles Synthesis from pheophyceaen Algae 14.5.2 Green Algae and Gold Nanoparticles Synthesis 14.6 Spectroscopic and Diffractographic Techniques 14.7 Mechanism of Nanoparticles Synthesis 14.8 Factors Controlling Synthesis of Nanoparticles 14.8.1 Effect of Microalgal Extracts 14.8.2 Effect of Contact Time 14.8.3 Effect of pH 14.8.4 Effect of Temperature 14.9 Applications of Microalgal Nanoparticles 14.10 Conclusion References 15: Cyanobacterial blooms and Cyanotoxins: Occurrence and Detection 15.1 Introduction 15.2 Toxic CHABs and Cyanotoxins 15.3 Ecological Factors 15.3.1 Nutritional drivers of CHABs 15.3.2 Nutrient Drivers for Release of Extracellular Metabolites/Toxins 15.4 Methods of Detection 15.4.1 Sample Handling 15.4.2 Sample Analysis 15.5 Cyanotoxin Treatment and Bloom Management 15.5.1 Developing an Exigency Strategy 15.6 Future Prospects and Conclusion References 16: Potential of Golden Brown Algae in Forensic Analysis: A Review 16.1 Introduction 16.2 Structure of a Diatom Cell 16.3 Diatoms in Forensic Limnology 16.4 Course of Penetration of Diatoms Inside the Body of a Drowned Victim 16.5 Extraction Methods 16.5.1 Chemical Digestion Method 16.5.1.1 Limitations of Acid Digestion Method 16.5.2 Enzymatic Method 16.5.3 Combined Approachof Microwave Digestion, Vacuum Filtration and Scanning Electron Microscopy 16.5.4 Soluene-350 Digestion 16.5.5 Ash Digestion Method 16.5.6 Polymerase Chain Reaction (PCR) Method 16.5.7 Whole Slide Imaging 16.6 Status of Diatom Test in Solving Forensic Cases 16.7 Controversies in the Validation of Diatom Test in Solving Cases 16.8 Conclusion References