دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Gennadiy Alexeevitch Pavlov, Liang Yun, Alan Bliault, Shu-Long He سری: ISBN (شابک) : 1071604236, 9781071604236 ناشر: Springer سال نشر: 2020 تعداد صفحات: xxxvi+469 [495] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب Air Lubricated and Air Cavity Ships: Development, Design, and Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کشتی های روغن کاری شده با هوا و هوا: توسعه، طراحی و کاربرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فن آوری روغن کاری هوا و حفره هوا پیشرفت بزرگی است که در سال های اخیر به عنوان وسیله ای برای کاهش مقاومت و نیرو برای بسیاری از انواع کشتی ها و طراحی کارآمد برای شناورهای دریایی با سرعت بالا پدیدار شده است. این کتاب مکانیسمهای کاهش درگ لایه مرزی و مفاهیم مورد مطالعه در کارهای تحقیقاتی اولیه را معرفی میکند. روغن کاری حباب هوا و ورق برای کشتی های جابجایی تشریح شده و پروژه های کلیدی معرفی شده است. تولید حفره های هوای با جریان کم در زیر بدنه شناورهای جابجایی، نیمه جابجایی و نقشه کشی همراه با روش های تحلیل و طراحی نظری و تجربی معرفی شده است. کاهش مقاومت، کاهش توان و بهره وری سوخت برای شناورهای جابجایی و سرعت بالا پوشش داده می شود. اثرات لایه هوا و حفره هوا بر پایداری استاتیکی و دینامیکی کشتی پوشش داده شده است که به الزامات نظارتی مانند IMO مرتبط است. حرکات دریانوردی و کاهش بار ضربه سفینه پرسرعت در امواج از جمله نتایج آزمایش مدل مورد بحث قرار گرفته است. ادغام سیستم های محرکه برای قدرت بهینه خلاصه شده است. یک طرح پیشنهادی برای یک سفینه حفره هوا سوراخ کننده موج در یک پیوست گنجانده شده است. فهرست جامعی از منابع اسناد و مکان های اینترنتی برای تحقیقات بیشتر ارائه شده است.
Air Lubrication and Air Cavity Technology is a major development that has emerged in recent years as a means to reduce resistance and powering for many types of ships, and an efficient design for high speed marine vessels. This book introduces the mechanisms for boundary layer drag reduction and concepts studied in early research work. Air bubble and sheet lubrication for displacement vessels is outlined and the key projects introduced. Generation of low volume flow air cavities under the hull of displacement, semi displacement and planing vessels are introduced together with theoretical and empirical analysis and design methods. Resistance reduction, power reduction and fuel efficiency are covered for both displacement and high speed vessels. Air layer and air cavity effects on vessel static and dynamic stability are covered, linked to regulatory requirements such as IMO. Seaway motions and reduced impact load of high speed craft in waves are discussed including model test results. Integration of propulsion systems for optimum powering is summarized. A design proposal for a wave piercing air cavity craft is included in an appendix. A comprehensive listing of document resources and internet locations is provided for further research.
Preface Acknowledgements and Thanks Acknowledgements for Images and Data Contents About the Authors List of Figures List of Flow Charts List of Tables Chapter 1: Introduction 1.1 Resistance to Motion of Marine Vessels 1.2 Introduction to Air Lubrication and Air Cavity Vessels 1.2.1 Air Lubrication Displacement Ships Air Bubble Method Air Layer Method Air Cavity Method 1.2.2 High-Speed Air Cavity Craft Air Cavity Monohull Air Cavity Catamaran 1.3 Development of Displacement Air Lubrication Ships 1.3.1 Air Bubble Stream 1.3.2 MHI `MALS´ 1.3.3 Foreship Air Lubrication System (ALS) 1.3.4 Silverstream Air Lubrication System 1.3.5 Developments and Trials Using Winged Air Induction Pipe 1.3.6 Air Layer Development at WTSRI, Shanghai 1.3.7 Samsung Heavy Industries `Saver Air´ 1.4 Development of Displacement Air Cavity Ships 1.4.1 Developments in Russia 1.4.2 Stena Air Cavity Ship Research 1.4.3 Damen Ecoliner ACES and DACS 1.5 Development of High-Speed Air Cavity Craft 1.5.1 Opportunities and Challenges Opportunities Challenges 1.5.2 Developments in Russia 1.5.3 Developments in USA, Norway, and European Union 1.5.4 Developments in China 1.6 Closing Out References Chapter 2: Reducing Friction Resistance 2.1 Reducing Friction Resistance by Changing the Boundary Layer 2.1.1 Introduction 2.1.2 Suction of Boundary Layer with Aim of Preventing Its Separation from Ship Hull 2.1.3 Reducing Turbulence by Viscous-Elastic Coating 2.1.4 Using the Mechanism of the Running Wave 2.1.5 Introduction of Long Chain Polymer into Boundary Layer 2.2 Reducing Friction Resistance by Air Lubrication or Air Cavities 2.3 Concluding Thoughts References Chapter 3: Air Lubrication and Air Cavity Analysis 3.1 Introduction 3.2 Bubble Drag Reduction 3.2.1 Force Acting on a Bubble in the Boundary Layer 3.2.2 Downstream Persistence of BDR 3.2.3 Characteristics of Bubbly Flow Under the Surface 3.2.4 Scaling of BDR 3.3 Air Layer Drag Reduction 3.3.1 Transition from BDR to ALDR 3.3.2 Flow Characteristics of ALDR 3.3.3 Scaling of ALDR 3.4 Drag Reduction by Cavitation and Ventilated Cavities 3.4.1 Basic Parameters 3.4.2 Potential-Flow Solution for Cavity Geometry 3.4.3 Establishing and Maintaining a Cavity 3.5 Approach Developed in Russia for `Artificial´ Cavity Generation 3.5.1 Linear Theories of Gravitational Cavitation in a Fluid 3.5.2 Flow Around a Wedge under a Flat Surface 3.5.3 Cavitation Flow Around an Infinite Plane Wedge Under a Horizontal Plane 3.5.4 Calculation and Experimental Results 3.5.5 Flow Over a System of Infinite Straight Wedges Under a Horizontal Plane 3.6 Air Cavity Practical Application 3.7 Flow under a Planing Craft with a Cavity Under Its Bottom 3.7.1 Planing on a Free Surface 3.8 Reduction of Resistance by Means of Side Wedge Interceptors References Chapter 4: Air Cavity Ship Concept Evaluation 4.1 Introduction 4.2 Concept Evaluation of Several Types of ACS Configuration 4.2.1 Type 1 ACS 4.2.2 Type 2 ACS 4.2.3 Type 3 ACS 4.2.4 Type 4 ACS 4.2.5 Hydrodynamic Interaction and ACS Powering Assessment 4.3 Concept Evaluation of Displacement Ships with ACS 4.3.1 Introduction 4.3.2 First Design example: Dry Cargo River Trading Vessel 4.3.3 Second Design Example: Universal Container Ship Type `Panamax´ 4.4 Evaluation for Air Cavity Ships Operating at Transitional FnL 4.4.1 High-Speed Semi-Displacement Ships with Parallel Middle Body First Design Concept Second Design Concept Third Design Concept 4.4.2 Air Cavity Ships with Parallel Middle Body in Transitional Mode 4.5 Air Supply System for Air Cavity of ACS 4.5.1 Air Supply System for Air Cavity of Displacement ACS 4.6 Concluding Observations References Chapter 5: Air Cavity Ships Concept Evaluation Planing Types 5.1 Introduction 5.2 High-Speed Craft Drag Components 5.3 Model Test Data for Planing Craft 5.4 Cavity Flow 5.5 Prismatic Planing Craft 5.5.1 Hull Form and Drag Characteristic 5.5.2 Prismatic Planing Hull Equilibrium 5.5.3 Lift and Lift Coefficient 5.5.4 Planing Surface Wetted Area and Spray Area 5.5.5 Planing Hull Drag 5.5.6 Correction for Wetted Side Hull at Cv Below Full Planing 5.5.7 Chines, Spray Rails, and Hull Form 5.5.8 Corrections for Geometric Variation from Prismatic Form 5.5.9 Equilibrium: Recap 5.5.10 Pre-planing Drag Estimation 5.5.11 Transom Stern 5.5.12 Cavity Behaviour at Low Speed 5.6 Stepped Planing Hull 5.6.1 Flow Geometry Behind the Step 5.6.2 Geometrical Relations for Aft Planing Surface Need 5.6.3 Lift Coefficient and Lift for Aft Planing Surface 5.6.4 Friction Drag 5.6.5 Centre of Pressure and Moment Arms 5.6.6 Overall Balance of Forces and Moments 5.6.7 Commentary 5.7 Air Cavity Craft 5.8 Comments for Initial Estimation of Lift, Drag, and Equilibrium 5.9 Performance Estimation of ACC by Means of Model Testing 5.9.1 Model Experimental Investigation by Naval Engineering University, Wuhan 5.9.2 Model Testing of an ACC Design in CSSRC 5.9.3 Powering Comparison of Russian ACC with Planing Vessel Design 5.10 Concept Evaluation for High-Speed Planing ACC in Russia 5.10.1 Introduction 5.10.2 Design Project 1: Basic Conceptual Design for ACC 5.10.3 Design Project 2: Seagoing ACC 5.10.4 Design Project 3: Improving Seaworthiness 5.10.5 Design Project 4 5.10.6 Design Project 5 5.10.7 Design Project 6: Nautilus 62 5.11 Concluding Remarks References Chapter 6: ACC Stability and Seakeeping 6.1 Introduction 6.2 Displacement Air Lubrication and Air Cavity Ship Stability 6.3 Planing ACC Stability 6.3.1 Static Transverse Stability of Planing ACC Intact Condition Heeling Due to Wind Heeling Due to Passenger Crowding and High-Speed Turns Heeling Lever Due to High-Speed Turning Rolling in Waves Residual Stability After Damage 6.3.2 Dynamic Transverse Stability of Planing ACC 6.3.3 Dynamic Longitudinal Stability Porpoising Instability 6.4 Seakeeping 6.4.1 Seakeeping of Displacement AC Ships 6.4.2 Planing Craft in a Seaway 6.4.3 Seakeeping of Planing Air Cavity Craft 6.4.4 ACC Model Scale Investigation of Seakeeping in CSSRC [15] 6.4.5 Improving ACC Sea-keeping Quality 6.4.6 Wave Piercing Air Cavity Craft Concept Operation in Calm Water Operation in Waves 6.5 Discussion of Stability and Sea-Keeping Performance References Chapter 7: ALS and ACC Propulsion 7.1 Introduction 7.2 Application of Open Propellers 7.2.1 Application of Open Propellers to ALS and ACS 7.2.2 Application of Open Propellers on High-Speed ACC 7.3 Application of Shallow Submerged Propeller in Hull Half-Tunnel 7.4 Application of Ducted Propellers 7.5 Application of Partially Submerged Propellers 7.6 Application of Water Jet Propulsion 7.6.1 Application of Water Jet Propulsion Avoiding Ventilation 7.6.2 Application of Shallow Submerged Water Jet Propulsion with Integrated Rudder 7.7 Application of Supercavitating Water Jet Installation 7.8 Feeding Air Cavity by Means of ACC Main Engine Exhaust System References Chapter 8: Postscript Appendix A Conceptual Design Proposal: Wave Piercing Air Cavity Ferry Introduction Concept Presentation Improving Performance by Means of a Bow Propulsion Unit Bow Propulsion on ACC Using a Water Propeller Water Jet as Bow Propulsion on WPACC Further Development of Wave Piercing ACC Additional Variants for the Wave Piercing ACC References Appendix B Resources Resources by Chapter Reference Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 General References and Internet Links Technical Societies Universities, Marine Institutes, and Industry Organizations Air Cavity Vessels Designers Rules and Regulations International Organizations Software Propulsion Water Jets Propellers Surface Drives Engines Intake Filtration Service Suppliers and Marine Equipment Suppliers Gearboxes and Transmission Stabilizers and Interceptors Safety Outfitting, etc. Rubber Mountings Marine Fire and Sound Insulation Marine Architectural Panels Including Suspended Ceilings Seat Manufacturers Marine Interior Design Text Books and Reports Digital Reports and Document Libraries Naval Architecture Texts Text Books on Hydrodynamics of High-Speed Marine Vessels Hydrodynamics and Aerodynamics Classic Texts MARIN Research Reports (www.MARIN.nl) University of Southampton Reports Flying Boat and Seaplane Hydrodynamics Air Bubble and Air Cavity Dynamics Papers and Books High-Speed Stability Systematic Series General Planing Hydrodynamics Papers Spray Spray Rails Transom Sterns Stepped Hulls Air Cavity Craft Interceptors Water Jets Friction Drag Reduction Index