دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Adhiguna Mahendra
سری:
ISBN (شابک) : 9781484295014, 9781484295021
ناشر: Apress
سال نشر: 2023
تعداد صفحات: 434
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب AI Startup Strategy: A Blueprint to Building Successful Artificial Intelligence Products from Inception to Exit به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استراتژی استارتاپ هوش مصنوعی: طرحی برای ساخت محصولات موفق هوش مصنوعی از آغاز تا خروج نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دسترسی انحصاری به اسرار ایجاد یک استارت آپ هوش مصنوعی سازمانی داشته باشید. نوآوری هوش مصنوعی به هر جنبه ای از تجارت کمک می کند، از زنجیره تامین، بازاریابی و تبلیغات، خدمات مشتری، مدیریت ریسک، عملیات گرفته تا امنیت. صنایع از بخشهای مختلف از هوش مصنوعی استفاده میکنند و ارزشهای تجاری واقعی را از آن استخراج میکنند. این کتاب شما را در هر مرحله راهنمایی می کند، از تعریف نیاز کسب و کار و مدل کسب و کار، تا ثبت IP و محاسبه ارزش راه اندازی هوش مصنوعی. نحوه انجام اعتبار سنجی بازار و فناوری، انجام تحقیق و توسعه هوش مصنوعی ناب، طراحی معماری هوش مصنوعی، توسعه و عملیاتی کردن محصول هوش مصنوعی را مشاهده می کنید. این کتاب همچنین ساخت و مدیریت یک تیم هوش مصنوعی، همراه با جذب و حفظ کاربران تجاری و توسعهدهنده را پوشش میدهد، ایجاد یک راهاندازی هوش مصنوعی سازمانی دشوار است زیرا هوش مصنوعی سازمانی تلاشی برای ساخت برنامههایی برای تقلید از هوش انسانی برای حل مشکلات تجاری است. از این رو چالشی متفاوت با ساخت برنامه های سنتی غیر هوش مصنوعی، مانند جستجو، استخدام و مدیریت استعدادهای هوش مصنوعی دارد. طراحی مقرون به صرفه ترین و مقیاس پذیرترین هوش مصنوعی Enterprise; یا ایجاد بهترین روش برای عملیاتی کردن هوش مصنوعی در تولید از آنجایی که ما در طلوع اولین موج تولید هوش مصنوعی هستیم، محصولات مبتنی بر هوش مصنوعی برای شرکتها برای سالهای آینده ایجاد خواهند شد و استراتژی استارتآپ هوش مصنوعی راهنمای یک مرحلهای برای آن است. . آنچه می آموزید مطابقت با انتظارات مشتری در مقابل امکان سنجی فنی توجیه ارزش های کسب و کار و بازگشت سرمایه برای مشتریان بهترین مدل های کسب و کار را برای استارت آپ های هوش مصنوعی سازمانی با ارزش بالا طراحی کنید محصولی با هوش مصنوعی طراحی کنید که تجربه رضایت بخشی را برای کاربر به ارمغان بیاورد ثبت نام و ارزش گذاری AI IP Who این کتاب برای بنیانگذاران استارتآپ، مدیران محصول، معماران نرمافزار/مهندسین ارشد، مدیران اجرایی است.
Gain exclusive access to the secrets to building an enterprise AI start-up. AI innovation helps with every aspect of the business, from the supply chain, marketing, and advertising, customer service, risk management, operations to security. Industries from different verticals have been adopting AI and get real business values out of it. This book guides you through each step, from defining the business need and business model, all the way to registering IP and calculating your AI start-up valuation. You see how to perform market and technology validation, perform lean AI R&D, design AI architecture, AI product development and operationalization. The book also cover building and managing an AI team, along with attracting and keeping business and developer users, Building an Enterprise AI start-up is hard because Enterprise AI is an effort to build applications to mimic human intelligence to solve business problems. Hence it has a different challenge from building traditional non-AI applications, such as scouting, recruiting and managing AI talents; designing the most cost-efficient and scalable Enterprise AI; or establishing the best practice to operationalize AI in production As we are in the dawn of the AI-first product wave, AI-powered products for enterprises will be created for many years to come and AI Startup Strategy is the one-stop guide for it. What You\'ll Learn Match customer’s expectation VS technical feasibility Justify business values and ROI for customers Review the best business models for high valuation enterprise AI start-ups Design an AI product that gives a satisfactory experience for the user Register and value AI IP Who This Book is For Startup Founders, Product Managers, Software Architects/Lead Engineers, Executives
Contents About the Author The Praise for AI Startup Strategy Introduction Chapter 1: Fundamental of AI Startups Historical Perspective: The Fourth Revolution AI Startups vs. AI-First Companies Understanding Enterprise AI Fundamental of AI Technologies Large Language Models (LLMs) and AGI Enterprise AI, Analytics, and Automated Decision When to Deploy AI in Decision-Making Automated Decision and the SETDA Loop Conclusion Key Takeaways Chapter 2: AI Startup Landscape What Problems Do AI Startups Solve? The Role of an AI Product Manager AI Startup Business Model The Business Value Within the Value Chain The Business Value of an AI Product Understanding the Valuation of AI Startups AI Startup Acquisitions Challenges of Building AI Startups The Key to Building Successful AI Startups The Successful AI Startup Patterns Conclusion Key Takeaways Chapter 3: Product-Market Validation for AI-First SaaS SaaS and Its Evolution What Is SaaS From SaaS to AI-Powered SaaS to AI-First SaaS AI as a Service (AIaaS) Understanding the Fundamental Principles of SaaS Product-Market-Technology (P-M-T) and Validation Framework Product-Market Validation Fundamental Product-Technology Validation Fundamental Product-Market-Technology Validation Five-Step AI-First SaaS Validation Framework Step 1: Choosing a Target Industry Step 2: Brainstorming Ideas Step 3: Measuring Idea Feasibility Business Feasibility: Market Size Business Feasibility: Usage Frequency Business Feasibility: Market Need Business Feasibility: Use Case Scalability Business Feasibility: Competitiveness Technical Feasibility: Expected Level of Autonomy Technical Feasibility: Risk of Error Technical Feasibility: Algorithmic Complexity Technical Feasibility: Infrastructure Complexity Technical Feasibility: Data Feasibility Step 4: Recruiting Early Adopters Step 5: Validating Product-Market-Technology Fit Conclusion Key Takeaways Chapter 4: Product-Market Validation for AI as a Service (AIaaS) What Is AIaaS and a Developer-Centric Product Definition of AIaaS and B2D Difference Between B2B and B2D Understanding a Developer-Oriented AI Product: API AIaaS Business Models Why Selling to Developers The Developer Market Is Lucrative The Characteristics and Challenges of the Developer Market Key to a Successful Developer-Centric Product The Mistakes of Developer-Centric Product Strategy Five-Step AIaaS Validation Step 1: Breaking Down the AI Solution Step 2: Defining the Vertical Market Step 3: Mapping the Developer Buying Journey Step 4: Testing the Market Step 5: Validating Product-Market-Technology Fit Conclusion Key Takeaways Chapter 5: AI Product Strategy Product Strategy Fundamental Product Roadmap Define Product Vision, Strategy, and Roadmap Product Discovery Understanding Customer Needs Discovery of Needs Translating Needs to Requirements Product Requirements Analysis Define Product Requirements Product Prioritization Identification of Product Purpose and Product Objectives From Product Objectives to Customer Values to Roadmap Collaborative Weighted Scorecard Prioritization Method Measuring the Efficacy of the Product Roadmap Ten Sins of AI Product Roadmapping Conclusion Key Takeaways Chapter 6: Human-Centered AI Experience Design The Principles of Human Factors in AI Embrace Customer Needs Amplify Human Capability Embrace Trustworthiness Be Ethical User Experience Design of an AI Product Principles of AI UX Design Design Thinking AI UX Design Principles AI UX Design Process Framework 1. Empathize Steps: Output: 2. Define Steps: Output: 3. Ideate Steps: Output: 4. Prototype Steps: Output: 5. Test Steps: Conclusion Key Takeaways Chapter 7: Human- Centered AI Developer Experience Design AI Products for Developers Principles of AI DX Design AI Developer Experience Process Framework 1. Empathize 2. Define 3. Ideate 4. Prototype 5. Test Conclusion Key Takeaways Chapter 8: Building an AI Platform Introduction Key Components and Layers of an AI Software Platform AI Platform Design Six Layers of the AI Platform MLOps/ModelOps LLM, VLP, and LLMOps Team Topologies Unifying All Challenges in Building an AI Platform Ideal AI Platform Design Architecting an AI Platform AI Product Archetypes and Their Architectural Complexity Measuring the Maturity Level of Your AI System Best Practices of Architecting an AI Software Platform Designing the AI Platform Architecture Evaluating Technology Choices Developing an AI Platform Why AI Software Development Is Different from Traditional Software Development The Principles of Software Development for an AI Software Platform Understanding AI Software Development Stages Measuring the Maturity Level of an AI Software Development Process Measuring AI Software Development Process Maturity Applying the Measurement Framework to Your Process AI Software Development Process Operationalizing an AI Platform Team and Task Coordinating the Different Teams with Team Topologies Registering IP of an AI Product How to Scout Top AI Talents and Compete with Big Tech Conclusion Key Takeaways Chapter 9: Go-to-Market Strategy for an AI Startup Background Introduction to the Go-to-Market Strategy for AI Startups The Importance of a Go-to-Market Strategy for AI Startups Description of Different Types of AI Products AI (as a) Solution AI as a Service AI (as a) Toolkit Go-to-Market Strategy for AI (as a) Solution Identifying the Target Market Developing a Unique Value Proposition Designing a Customer Journey Map Developing a Marketing Strategy to Reach the Target Market Go-to-Market Strategy for AI as a Service Understanding the Needs and Pain Points of Developers Developing a User-Friendly and Flexible API and SDK 1. Clear Documentation 2. Integration 3. Flexibility 4. Consistency 5. Excellent Assistance 6. Compatibility What Makes a Great Documentation? Determining the Pricing Model and Packaging That Appeals to Developers Packaging Strategies for AIaaS Pricing Models for AIaaS Customer Journey Mapping Find Assess Absorb Develop Scale Developing a Marketing Strategy Go-to-Market Strategy for AI (as a) Toolkit Understanding the Needs and Pain Points of Developers and Data Scientists Developing a User-Friendly and Comprehensive AI Toolkit Determining the Pricing Model and Packaging That Appeals to Developers Designing a Customer Journey Map Building a Partnership Strategy Partnership with Distributors Partnership with a System Integrator Developing a Marketing Strategy Conclusion Key Takeaways Chapter 10: AI Startup Exit Strategy Introduction The Gold Rush of AI Exit Strategies of AI Startups Why Companies Acquire The Importance of an Exit Plan Factors Impacting AI Startup Acquisition Identifying Potential Acquirers Understanding Your Strategic Value Searching and Assessing a Potential Acquirer Approaching Potential Acquirers and Initiating Conversations Preparing the Company for Sale Maximizing AI Startup Value Valuation Methods for AI Startups Creating a Compelling Story Negotiating the Sale Negotiating the Terms of the Sale Handle Objections and Counteroffers Key Legal and Financial Considerations During the Negotiation Process Due Diligence Technical Due Diligence Financial, Legal, and Commercial Due Diligence Labor Due Diligence Closing the Deal Finalize the Sale and Transfer Ownership of the Company Communication Strategy The Transition from Seller to Acquirer Conclusion Key Takeaways Final Thoughts Index