دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Louis Anthony Cox Jr.
سری: International Series in Operations Research & Management Science, 345
ISBN (شابک) : 3031320123, 9783031320125
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 442
[443]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب AI-ML for Decision and Risk Analysis: Challenges and Opportunities for Normative Decision Theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب AI-ML برای تصمیم گیری و تجزیه و تحلیل ریسک: چالش ها و فرصت ها برای نظریه تصمیم گیری هنجاری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پیشرفتها و پیشرفتهای اخیر در تصمیمگیری و تحلیل ریسک را توضیح میدهد و نشان میدهد. این نشان میدهد که چگونه هوش مصنوعی (AI) و یادگیری ماشین (ML) نه تنها از مفاهیم تحلیل تصمیمگیری کلاسیک مانند به حداکثر رساندن مطلوبیت مورد انتظار سود بردهاند، بلکه با وادار کردن آن به رویارویی با پیچیدگیهای واقعبینانه، به مفیدتر کردن نظریه تصمیمگیری هنجاری کمک کردهاند. اینها شامل کسب مهارت، اجرای نامشخص و وقت گیر اقدامات مورد نظر، عدم قطعیت های دنیای باز در مورد آنچه ممکن است در آینده اتفاق بیفتد و اقدامات می توانند چه پیامدهایی داشته باشند، و یادگیری مقابله موثر با محیط های نامطمئن و متغیر است. نتیجه یک فناوری قوی تر و قابل اجرا برای تصمیم گیری به کمک هوش مصنوعی/ML است. این کتاب برای اطلاع رسانی به مخاطبان گسترده در زمینه های کاربردی مرتبط و ارائه یک منبع سرگرم کننده و مهیج برای دانش آموزان، محققان و دانشگاهیان در علوم داده و AI-ML، تجزیه و تحلیل تصمیم، و سایر زمینه های دانشگاهی مرتبط است. همچنین برای مدیران، تحلیلگران، تصمیم گیرندگان و سیاست گذاران در زمینه مدیریت ریسک مالی، بهداشت و ایمنی، محیط زیست، تجارت، مهندسی و امنیت جذاب خواهد بود.
This book explains and illustrates recent developments and advances in decision-making and risk analysis. It demonstrates how artificial intelligence (AI) and machine learning (ML) have not only benefitted from classical decision analysis concepts such as expected utility maximization but have also contributed to making normative decision theory more useful by forcing it to confront realistic complexities. These include skill acquisition, uncertain and time-consuming implementation of intended actions, open-world uncertainties about what might happen next and what consequences actions can have, and learning to cope effectively with uncertain and changing environments. The result is a more robust and implementable technology for AI/ML-assisted decision-making. The book is intended to inform a wide audience in related applied areas and to provide a fun and stimulating resource for students, researchers, and academics in data science and AI-ML, decision analysis, and other closely linked academic fields. It will also appeal to managers, analysts, decision-makers, and policymakers in financial, health and safety, environmental, business, engineering, and security risk management.
Preface Acknowledgments Contents Part I: Received Wisdom Chapter 1: Rational Decision and Risk Analysis and Irrational Human Behavior Introduction Extending Classical Decision Analysis (DA) with AI/ML Ideas Decision Analysis for Realistically Irrational People Two Decision Pathways: Emotions and Reasoning Guide Decisions We All Make Predictable Mistakes Marketers, Politicians, Journalists, and Others Exploit Our Systematic Mistakes People Respond to Incentives and Influences in Groups, Organizations, and Markets Moral Psychology and Norms Improve Cooperative Risk Management We Can Learn to Do Better The Rise of Behavioral Economics Beyond Behavioral Economics and Rational Choice: Behaving Better in a Risky World Review of Behave: The Biology of Humans at Our Best and Worst 12 Rules for Life: An Antidote to Chaos Comments on Behave and 12 Rules Review of Morality: Restoring the Common Good in Divided Times References Chapter 2: Data Analytics and Modeling for Improving Decisions Introduction Forming More Accurate Beliefs: Superforecasting Learning About the World Through Data Analysis: The Art of Statistics Using Models to Interpret Data: The Model Thinker Overview of Contents Comments on The Model Thinker Responding to Change Strategically: Setting Goals and Acting Under Uncertainty Using Data to Discover What Works in Disrupting Poverty Conceptual Framework: Uncertain Risks and Rewards and Poverty Traps Extending and Applying the Framework: How Risk and Perceptions Strengthen Poverty Traps Escaping Poverty Traps: Weakly Held Beliefs and Credible Communication How Can Analysis Help Reduce Health Risks and Poverty? References Chapter 3: Natural, Artificial, and Social Intelligence for Decision-Making Introduction Biological Foundations of Thought: Cognitive Neuroscience Thinking and Reasoning Computational Models of Nondeliberative Thought: Deep Learning (MIT Press, 2019) Computational Models of Deliberative Thought: Artificial Intelligence: A Very Short Introduction (Oxford University Press, 201... Communities of Knowledge Factfulness: Ten Reasons We´re Wrong About the World-and Why Things Are Better Than You Think Aligning AI-ML and Human Values: The Alignment Problem Conclusions References Part II: Fundamental Challenges for Practical Decision Theory Chapter 4: Answerable and Unanswerable Questions in Decision and Risk Analysis Introduction: Risk Analysis Questions Some Models and Methods for Answering Risk Analysis Questions The Simplest Causal Models: Decision Tables and Decision Trees Fault Trees, Event Trees, Bayesian Networks (BNs) and Influence Diagrams (IDs) Markov Decision Processes (MDPs) and Reinforcement Learning (RL) Simulation-Optimization for Continuous, Discrete-Event, and Hybrid Simulation Models Response Surface Methodology Adaptive and Robust Control Distributed and Hierarchical Control of Uncertain and Non-stationary Systems Decentralized Multi-agent Control: POMDP, decPOMD, SMDP, and POSMDP Models Agent-Based Models (ABMs) and Cellular Automata (CA) Game Theory Models and Adversarial Risks Undecidability: Not All Risk Analysis Questions Can Be Answered in All Causal Models Undecidable Questions in Hazard Identification and Probabilistic Risk Assessment Undecidable Questions in Risk Management Control of Deterministic Dynamic Systems Risk Management of Uncertain Systems Modeled by POMDPs Monitoring and Probabilistic Fault Diagnosis in Partially Observable Systems: Timeliness vs. Accuracy Guaranteeing Timely Resolution of Tasks with Uncertain Completion Times Multi-agent Team Control Risk Management with Intelligent Adversaries: Game Theory Models Learning Causal Models from Data Responding to the Intractability of Risk Analysis Risk Analysis for Restricted Systems: Complexity-Tractability Trade-Offs Design of Resilient Systems for More Tractable Risk Management Open-World vs. Closed-World Risks Artificial Intelligence (AI) Methods for Coping with Open-World Novelty and Risk Behavior Trees (BTs) Enable Quick Responses to Unexpected Events While Maintaining Multiple Goals Integrated Machine Learning and Probabilistic Planning for Open Worlds Anomaly Detection Helps Focus Attention When Needed Summary: AI Capabilities for Dealing with Open-World Risks and Uncertainties Discussion and Conclusions: Thriving with a Mix of Answerable and Unanswerable Questions References Chapter 5: Decision Theory Challenges for Catastrophic Risks and Community Resilience Introduction Challenges of Rare Catastrophic Events to Traditional Analytical Methods Unpredictability of Catastrophes in Physical, Biological, and Social Systems Example: Self-Organizing Criticality Makes the Size and Timing of System Responses Unpredictable Example: Poisson Arrival of Rare Catastrophic Events Example: Unpredictability in Deterministic Physical and Ecological Models Example: Deterministic Chaos Limits Possible Forecast Horizons Decision Analysis Can Omit Crucial Details in Describing Catastrophes Example: Risk Curves for Frequency and Severity Do Not Show Risk Equity Emergent Precautionary Choice Behaviors Can Be Incoherent and Unpredictable Example: Coherent Individual Preferences Can Create Incoherent Group Choices Example: Dynamic Inconsistency of Majority Preferences for Costly Precautions Challenges to Normative Group Decision Theory for Risk Management Example: Aggregating Individual Beliefs Can Lead to Group Risk Management Decisions that No One Likes Toward a New Foundation for Disaster Risk Management: Building Disaster-Resilient Communities Example: Resilient Response to the North Sea Flood of 1953 Bistability and the Evolution and Collapse of Social Cooperation Summary and Conclusions References Chapter 6: Learning Aversion in Benefit-Cost Analysis with Uncertainty Introduction: Benefit-Cost Analysis (BCA) Fundamentals Aspirations and Benefits of BCA Example: Majority Rule Without BCA Can Yield Predictably Regrettable Collective Choices Limitations of BCA for Purely Rational People, Homo Economicus Example: Pareto-Inefficiency of BCA with Disagreements About Probabilities Example: Impossibility of Pareto-Efficient Choices with Sequential Selection How Real People Evaluate and Choose Among Alternatives Learning Aversion and Other Decision Biases Inflate WTP for Uncertain Benefits Example: Overconfident Estimation of Health Benefits from Clean Air Regulations Assuming No Risk Aversion Inflates the Estimated Value of Public Projects with Uncertain Benefits Example: Information Externalities and Learning Aversion in Clinical Trials Example: Desirable Interventions with Uncertain Benefits Become Undesirable When They Are Scaled Up Doing Better: Using Predictable Rational Regret to Improve BCA Example: Rational vs. Irrational Regret Conclusions References Part III: Ways Forward Chapter 7: Addressing Wicked Problems and Deep Uncertainties in Risk Analysis Introduction: How to Make Good Decisions with Deep Uncertainties? Principles and Challenges for Coping with Deep Uncertainty Point of Departure: Subjective Expected Utility (SEU) Decision Theory Four Major Obstacles to Applying SEU to Risk Management with Model Uncertainty Ten Tools of Robust Risk Analysis for Coping with Deep Uncertainty Use Multiple Models and Relevant Data to Improve Decisions Robust Decisions with Model Ensembles Example: Robust Decisions with Model Uncertainty Example: Robustness, Multiple Models, Ambiguous Probabilities, and Multiple Priors Example: Robust Optimization and Uncertainty Sets Using Coherent Risk Measures Averaging Forecasts Resampling Data Allows Robust Statistical Inferences in Spite of Model Uncertainty Adaptive Sampling and Modeling: Boosting Bayesian Model Averaging (BMA) for Statistical Estimation with Relevant Data But Model Uncertainty Learning How to Make Low-Regret Decisions Example: Learning Low-Regret Decision Rules with Unknown Model Probabilities Reinforcement Learning of Low-Regret Risk Management Policies for Uncertain Dynamic Systems Example: Reinforcement Learning of Robust Low-Regret Decision Rules Example: Model-Free Learning of Optimal Stimulus-Response Decision Rules Applying the Tools: Accomplishments and Ongoing Challenges for Managing Risks with Deep Uncertainty Planning for Climate Change and Reducing Energy Waste Sustainably Managing Renewable Resources and Protecting Ecosystems Managing Disease Risks Maintaining Reliable Network Infrastructure Service Despite Disruptions Adversarial Risks and Risks from Intelligent Agents Conclusions References Chapter 8: Muddling-Through and Deep Learning for Bureaucratic Decision-Making Introduction: Traditional Benefit-Cost Analysis (BCA) and Decision Analysis Developments in Rational-Comprehensive Models of Decision-Making Modern Algorithms for Single- and Multi-Agent Decision-Making Discussion: Implications of Advances in Rational-Comprehensive Decision Theory for Muddling Through Conclusions References Chapter 9: Causally Explainable Decision Recommendations Using Causal Artificial Intelligence Introduction: Creating More Trustworthy AI/ML for Acting Under Risk and Uncertainty The Structure of Traditional Statistical Explanations The Structure of Explanations in Causal Bayesian Networks (BNs) Explaining Direct, Indirect (Mediated), and Total Effects Conditional Independence and Potential Causality in BNs Causal Discovery for Predictive, Interventional, and Mechanistic Causation Knowledge-Based Constraints Help to Orient Arrows to Reflect Causal Interpretations Structure of Most Probable Explanations (MPEs) in Bayesian Networks Explaining Predictions for Effects of Interventions: Adjustment Sets, Causal Partial Dependence Plots (PDPs) and Accumulated L... Structure of Explanations for Decision and Policy Recommendations in Influence Diagrams (IDs): Maximizing Expected Utility wit... Structure of Explanations for Decision Recommendations Based on Monte Carlo Tree Search (MCTS) and Causal Simulation Structure of Explanations for Decision Recommendations Based on Reinforcement Learning (RL) with Initially Unknown or Uncertai... Limitations and Failures of Causally Explainable Decisions for Dynamic Systems Discussion: Explaining CAI Decision Recommendations Applying CAI Principles to Explain Decision Recommendations Conclusions: Explaining Recommended Decisions in Causal AI References Part IV: Public Health Applications Chapter 10: Re-Assessing Human Mortality Risks Attributed to Agricultural Air Pollution: Insights from Causal Artificial Intel... Introduction Limitations of Current Qualitative Hazard Identification for PM2.5-Mediated Health Effects of NH3 Emissions Burden of Disease Calculations Deaths Attributed to Air Pollution Do Not Refute Non-Causal Explanations Attributed Risks Do Not Predict Effects of Interventions Attributed-Mortality Calculations Do Not Reveal Effects on Mortality of Reducing Air Pollution Intervention Studies Do Not Support Attributed Risks Based on Associations Some Limitations of the Quantitative Risk Assessment Considerations from Causal Artificial Intelligence (CAI) and Machine Learning Conditional Independence Analysis Granger Causality Analysis Non-Parametric Analysis of Heterogeneous Exposure Effects Invariant Causal Prediction and Transportability of Estimated Causal Effects Probabilistic Causal Network Modeling of Multiple Interrelated Variables Discussion and Conclusions References Chapter 11: Toward More Practical Causal Epidemiology and Health Risk Assessment Using Causal Artificial Intelligence Introduction: Why Are Better Causal Methods Needed in Applied Epidemiology? Thinking About Causation: A Thought Experiment with Dominos Different Concepts of Causation Clarifying Causation with Conditional Probability Networks Pivoting Epidemiology from Attribution to Causal Prediction CAI Conceptual Framework: Qualitative Structure of Causal Networks of Probabilistic Causal Mechanisms Practical Algorithms for Quantitative Causal Inference and Prediction with Realistically Imperfect Data Implications of CAI for Calculating and Interpreting Preventable Fractions Seeing Is Not Doing Ambiguity of Counterfactuals for PAFs Discussion and Conclusions: Toward Pragmatic Causal PAF Calculations References Chapter 12: Clarifying the Meaning of Exposure-Response Curves with Causal AI and ML Introduction: What Does an Exposure-Response Curve Mean? Exposure-Response Regression Curves Describe Responses at Different Observed Exposures A Point of Departure: Correlation vs. Causality Assumption-Dependent Causal Interpretations of Exposure-Response Regression Models Heterogeneity in Individual Risks Ambiguous Regression Coefficients: Inference vs. Intervention Logistic Regression vs. Non-Parametric Exposure-Response Curves Partial Dependence Plots (PDPs) Describing Interindividual Heterogeneity in Exposure-Response Functions: Individual Conditional Expectation (ICE) Plots Relevant and Data-Informed Counterfactuals: Two-Dimensional Partial Dependence Plots (2D-PDPs) Discussion and Conclusions: What Do We Want Exposure-Response Curves to Mean? References Chapter 13: Pushing Back on AI: A Dialogue with ChatGPT on Causal Inference in Epidemiology Introduction Dialogue with ChatGPT on Causal Interpretation of PM2.5-Mortality Associations Discussion Conclusion References Index