دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Anshik
سری:
ISBN (شابک) : 1484270851, 9781484270851
ناشر: Apress
سال نشر: 2021
تعداد صفحات: 391
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب AI for Healthcare with Keras and Tensorflow 2.0: Design, Develop, and Deploy Machine Learning Models Using Healthcare Data به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی برای مراقبت های بهداشتی با Keras و Tensorflow 2.0: طراحی، توسعه و استقرار مدل های یادگیری ماشین با استفاده از داده های مراقبت های بهداشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سطح کاربری متوسط-پیشرفته
Intermediate-Advanced user level
Table of Contents About the Author About the Technical Reviewers Introduction Chapter 1: Healthcare Market: A Primer Different Stakeholders of the Healthcare Marketplace Regulators Food and Drug Administration (FDA) Center for Medicare and Medicaid Services (CMS) Center for Medicare and Medicaid Innovation (CMMI) Payers Providers Regulation of Healthcare Information AI Applications in Healthcare Screening Diagnosis Prognosis Response to Treatment What Is the Industry Landscape? Conclusion Chapter 2: Introduction and Setup Introduction to TensorFlow 2 TensorFlow Core TensorFlow JS TensorFlow Lite TensorFlow Extended TensorFlow 1.x vs 2.x What Is TF 1.x? Embracing TF 2.x Eager Execution AutoGraph TensorFlow Datasets tf.keras Estimators Recommendations for Best Use Installation and Setup Python Installation Using the Virtual Environment Library and Versions TensorFlow and GPU Others Conclusion Chapter 3: Predicting Hospital Readmission by Analyzing Patient EHR Records What Is EHR Data? MIMIC 3 Data: Setup and Introduction Access Introduction and Setup Data Social and Demographic Admissions Related Patient’s Clinical Data Lab Events Comorbidity Score Modeling for Patient Representation A Brief Introduction to Autoencoders Feature Columns in TensorFlow Creating an Input Pipeline Using tf.data Creating Feature Columns Building a Stacked Autoencoder Cohort Discovery What Is an Ideal Cohort Set? Optimizing K-Means Performance Deciding the Number of Clusters by Inertia and Silhouette Score Analysis Checking Cluster Health Multitask Learning Model What Is Multitask Learning ? Different Ways to Train a MTL Model Training Your MTL Model Conclusion Chapter 4: Predicting Medical Billing Codes from Clinical Notes Introduction Data NOTEEVENTS DIAGNOSES_ICD Understanding How Language Modeling Works Paying Attention Transforming the NLP Space: Transformer Architecture Positional Encoding Multi-Head Attention BERT: Bidirectional Encoder Representations from Transformers Input Token Embeddings Segment Embeddings Training Masked Language Modeling Next-Sentence Prediction Modeling BERT Deep-Dive What Does the Vocabulary Actually Contain? Training Conclusion Chapter 5: Extracting Structured Data from Receipt Images Using a Graph Convolutional Network Data Mapping Node Labels to OCR Output Node Features Hierarchical Layout Line Formation Graph Modeling Algorithm Input Data Pipeline What Are Graphs and Why Do We Need Them? Graph Convolutional Networks Convolutions over Graph Understanding GCNs Layer Stacking in GCNs Training Modeling Train-Test Split and Target Encoding Creating Flow for Training in StellarGraph Training and Model Performance Plots Conclusion Chapter 6: Handling Availability of Low-Training Data in Healthcare Introduction Semi-Supervised Learning GANs Autoencoders Transfer Learning Weak Supervised Learning Exploring Snorkel Data Exploration Introduction Labeling Functions Regex Syntactic Distance Supervision Pipeline Writing Your LFs Working with Decorators Preprocessor in Snorkel Training Evaluation Generating the Final Labels Conclusion Chapter 7: Federated Learning and Healthcare Introduction How Does Federation Learning Work? Types of Federated Learning Horizontal Federated Learning Vertical Federated Learning Federated Transfer Learning Privacy Mechanism Secure Aggregation Differential Privacy TensorFlow Federated Input Data Custom Data Load Pipeline Preprocessing Input Data Creating Federated Data Federated Communications Evaluation Conclusion Chapter 8: Medical Imaging What Is Medical Imaging? Image Modalities Data Storage Dealing with 2-D and 3-D Images Handling 2-D Images DICOM in Python EDA on DICOM Metadata View Position Age Sex Pixel Spacing Mean Intensity Handling 3-D Images NIFTI Format Introduction to MRI Image Processing Non-Even Pixel Distribution Correlation Test Cropping and Padding Image Classification on 2-D Images Image Preprocessing Histogram Equalization Isotropic Equalization of Pixels Model Creation Preparing Input Data Training Image Segmentation for 3-D Images Image Preprocessing Bias Field Correction Removing Unwanted Slices Model Creation Preparing Input Data Training Performance Evaluation Transfer Learning for Medical Images Conclusion References Chapter 9: Machines Have All the Answers, Except What’s the Purpose of Life Introduction Getting Data Designing Your Q&A Retriever Module Query Paraphrasing Retrieval Mechanics Term/Phrase-Based Semantic-Based Reranking Comprehension BERT for Q&A Fine-Tuning a Q&A Dataset Final Design and Code Step 0: Preparing the Document Data Step 1: BERT-QE Expansion Step 1.1: Extract the Top k Documents for a Query Using BM-25 Step 1.2: Relevance Score on the Top 200 Documents Step 2: Semantic Passage Retrieval Step 3: Passage Reranking Using a Fine-Tuned Covid BERT Model on the Med-Marco Dataset Step 4: Comprehension Conclusion Chapter 10: You Need an Audience Now Demystifying the Web How Does an Application Communicate? Cloud Technology Docker and Kubernetes Why Docker? OS Virtualization Kubernetes Deploying the QnA System Building a Flask Structure Deep Dive into app.py Understanding index.html Dockerizing Your Application Creating a Docker Image Base Image and FROM Command COPY and EXPOSE WORKDIR, RUN, and CMD Dockerfile Building Docker Image Making It Live Using Heroku Conclusion Index