دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Majeti Narasimha Vara Prasad (editor)
سری:
ISBN (شابک) : 0081030177, 9780081030172
ناشر: Butterworth-Heinemann
سال نشر: 2020
تعداد صفحات: 677
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تشخیص، درمان و اصلاح مواد شیمیایی کشاورزی: آفت کش ها و کودهای شیمیایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تشخیص، درمان و اصلاح مواد شیمیایی کشاورزی بر آخرین تحقیقات پیرامون شناسایی و اصلاح نسل جدیدی از آلایندههای شیمیایی کشاورزی تمرکز دارد. این کتاب میزان وقوع، منابع، انواع و اثرات مواد شیمیایی کشاورزی از جمله علف کش ها، حشره کش ها، قارچ کش ها و مواد بخور خاک را در محیط زیست تعریف می کند. این کتاب هر دو روش فیزیکی و شیمیایی پیشرفته را برای کاهش این آلاینده های در حال ظهور در رسانه های محیطی پوشش می دهد. مهندسان و محققان محیط زیست این را مرجع ارزشمندی در مورد فرآیندهای پیشرفته برای بازیابی منابع، از جمله فناوری نانو برای بازیابی فسفات از پساب صنعت کود خواهند دانست.
Agrochemicals Detection, Treatment and Remediation focuses on the latest research surrounding the detection and remediation of a new generation of agrochemical contaminants. The book defines the occurrence, sources, types and effects of agrochemicals, including herbicides, insecticides, fungicides and soil fumigants in the environment. The book covers both advanced physical and chemical methods for the abatement of these emerging contaminants in environmental media. Environmental Engineers and Researchers will find this to be a valuable reference on advanced processes for resource recovery, including nanotechnology for the recovery of phosphate from fertilizer industry wastewater.
Cover Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers Copyright Contents List of contributors About the editor Professional experience Academic honors Visiting assignments in various universities—widely traveled Preface Acknowledgments 1 Biodegradation of pesticides by adapted fungi. Potential use on biopurification systems? 1.1 Introduction 1.2 Material and methods 1.2.1 Chemicals 1.2.2 Microorganisms 1.2.3 Selection and identification of fungal strains 1.2.4 Experimental setup 1.2.5 Analysis by scanning electron microscopy 1.2.6 Pesticide residue analysis 1.2.6.1 Pesticide extraction 1.2.6.2 HPLC–UV analysis 1.2.6.3 Liquid chromatography coupled to mass spectrometry analysis 1.2.7 Statistical analysis 1.3 Results and discussion 1.3.1 Pesticide biodegradation by fungi—comparing efficiencies. Which was the best? 1.3.2 Cork as attenuator or immobilizing factor? 1.3.3 Elucidating the role of fungi on pesticide biodegradation 1.4 Conclusion References Further reading 2 Influence of synthetic fertilizers and pesticides on soil health and soil microbiology 2.1 Introduction 2.1.1 Synthetic or inorganic fertilizers 2.1.1.1 Synthetic fertilizers of nitrogen 2.1.1.2 Synthetic fertilizers of phosphate 2.1.1.3 Synthetic fertilizers of potassium 2.1.2 Pesticides 2.1.3 Soil health 2.1.4 Soil microbiology 2.2 Impact of synthetic fertilizer 2.2.1 Soil health 2.2.2 Soil microbiology 2.3 Impact of pesticides 2.3.1 Soil health 2.3.2 Soil microbiology 2.4 Concluding remarks and future directions Acknowledgments References Further reading 3 Phytotoxicity, environmental and health hazards of herbicides: challenges and ways forward 3.1 Introduction 3.2 Use of herbicides: global trends 3.3 Herbicide: boon or bane 3.3.1 Herbicide: a popular tool for weed management in field crops 3.3.2 Using herbicide: toxic consequences of the Green Revolution 3.4 Herbicide-induced phytotoxicity 3.4.1 Seed germination 3.4.2 Plant growth 3.4.3 Physiological disorders 3.4.4 Oxidative stress 3.4.5 Crop quality reduction 3.5 Herbicide use and environmental pollution 3.5.1 Water pollution 3.5.2 Soil pollution 3.6 Herbicide toxicity and human health: the ultimate threat 3.7 Bioherbicide: effective alternative and way forward to a sustainable environment 3.7.1 Plant derivatives 3.7.2 Microbial bioherbicides 3.8 Conclusion and future perspectives Acknowledgment References Further reading 4 Impacts of agrochemicals on soil microbiology and food quality 4.1 Introduction 4.2 Impacts of agrochemicals on climate change 4.3 Impact of agrochemicals on the environment 4.4 Impact of agrochemicals on the soil or microbes/microbial community 4.5 Effect of agrochemicals on food 4.6 Conclusion or future prospective References 5 Emerging agrochemicals contaminants: current status, challenges, and technological solutions 5.1 Introduction: emerging environmental contaminants 5.2 Emerging agrochemicals: current status in water resources 5.3 Health effects 5.4 Detection methodologies 5.5 Removal technologies: status and challenges 5.6 Nanomaterials in tackling emerging agrochemicals 5.7 Future outlook References 6 Chemical fertilizers and pesticides: role in groundwater contamination 6.1 Agrochemicals 6.2 Types of agrochemicals 6.2.1 Fertilizers 6.2.2 Pesticides 6.3 Need of agrochemicals 6.4 Effects of agrochemicals 6.4.1 On human health 6.4.2 On ecological systems 6.4.3 On groundwater resources 6.5 Factors influencing agrochemical contamination of water resources 6.5.1 Quantity of applied agrochemical(s) 6.5.2 Weather and climatic factors 6.5.3 Quality of agrochemicals applied 6.5.4 Nature of agrochemicals 6.5.5 Route of exposure of agrochemicals 6.6 Alternative options of agrochemicals 6.6.1 Effective training to the farmers for the sustainable use of fertilizers and pesticides 6.6.2 Integrated pest management 6.6.3 Training and certification program for awareness about the side effects of agrochemicals 6.6.4 Application of biological agents in agriculture as biopesticides and biofertilizers 6.6.5 Composting: vermicompost, green manures, etc 6.6.6 Banned and restricted pesticides 6.7 Suggested framework for the management of agrochemicals 6.7.1 For pesticides 6.7.2 For fertilizers 6.8 Conclusion References 7 Impact of agrochemicals on soil health 7.1 Introduction 7.2 Current use of agrochemicals in agriculture 7.3 Fate and toxicity of agrochemicals in soil 7.4 Effects on soil biota and soil microflora 7.4.1 Effect on soil enzymatic activity 7.4.2 Effect on nutrient cycling microbial communities 7.5 A consequence of agrochemicals on soil health 7.6 Conclusion References 8 Sorption and desorption of agro-pesticides in soils 8.1 Introduction 8.2 Occurrence of agro-pesticides in soils 8.3 Factors affecting fate and mobility of agro-pesticides in soils 8.3.1 Effect of clay types and contents 8.3.2 Effect of organic matter content 8.3.3 Effect of pH 8.4 Conclusion References 9 Bioaugmentation an effective strategy to improve the performance of biobeds: a review 9.1 Pesticide biopurification systems (biobeds)—a feasible solution for minimizing the risk of point-source contamination b... 9.2 How to ameliorate depuration performance in a biobed? 9.2.1 Lignocellulosic substrates 9.2.2 Soil 9.2.3 Humified materials 9.2.4 Biomixture age 9.2.5 Biomixture temperature 9.2.6 Biobed water management 9.3 Processes responsible for pesticides mitigation in a biopurification systems 9.3.1 Abiotic processes 9.3.2 Biotic processes 9.4 Bioaugmentation 9.5 Conclusion References 10 Lichens as a source and indicator of agrochemicals 10.1 Introduction 10.2 Habit and ecological impact of lichens 10.3 Lichen as a resource of agrochemicals 10.4 Growth and multiplication of lichen exposed to agrochemicals 10.5 Lichen as indicators of agrochemicals 10.6 Conclusion References 11 Biofertilizers as substitute to commercial agrochemicals 11.1 Introduction 11.2 Use of commercial agrochemicals in agriculture and their effect on the environment 11.3 Mechanisms of plant growth promotion 11.3.1 Direct interaction 11.3.1.1 Nitrogen fixation 11.3.1.2 Phosphate solubilization 11.3.1.3 Potassium solubilization 11.3.1.4 Iron acquisition 11.3.1.5 Phytohormone production 11.3.1.5.1 Indole-3-acetic acid 11.3.1.5.2 Cytokinins 11.3.1.5.3 Gibberellins 11.3.1.5.4 Abscisic acid 11.3.2 Indirect mechanism 11.3.2.1 Disease resistance antibiosis 11.3.2.2 Bacteriocin 11.3.2.3 Production of protective enzymes 11.3.2.3.1 Chitinase 11.3.2.3.2 Glucanase 11.3.2.3.3 Protease 11.3.2.3.4 Cellulase 11.3.2.4 Hydrogen cyanide and ammonia 11.3.2.5 1-Aminocyclopropane-1-carboxylate deaminase 11.3.2.6 Exopolysaccharide production 11.3.2.7 Heavy metal and organic pollutant remediation 11.3.2.8 Production of volatile organic compounds 11.3.2.9 Induced systemic resistance 11.4 Development of biofertilizer formulations for rhizoengineering 11.5 Scope of application of biofertilizers as an alternative to agrochemicals for sustainable agricultural practice References 12 Agrochemical usage for sustainable fruit production and human health 12.1 Introduction 12.2 Evaluation of the environment of conventional orcharding 12.3 Principles of sustainable orcharding 12.3.1 Biodiversity 12.3.2 Soil health 12.4 Safety of foods and health effects of agrochemicals 12.5 Conclusion References 13 Earthworm-assisted bioremediation of agrochemicals 13.1 Introduction 13.2 Types and classification of agrochemicals 13.3 Consumption of agrochemicals and its regulation: global versus India 13.3.1 Global regulations 13.3.2 Indian regulations 13.4 Effect of agrochemicals on environment and human health 13.4.1 Environmental impacts 13.4.1.1 Water 13.4.1.2 Air 13.4.1.3 Soil 13.4.2 Human health impact 13.5 Strategies to overcome the harmful effects of agrochemicals 13.5.1 Role of earthworm in agrochemicals remediation 13.6 Future prospects and conclusion References Further reading 14 Vermiremediation remediation of agrochemicals 14.1 Introduction 14.1.1 Agrochemicals 14.1.1.1 Statistics of agrochemical market 14.1.2 Impact of agrochemicals to the environment 14.1.2.1 Soil contamination and impact on soil fertility 14.1.2.2 Water contamination 14.1.2.3 Impact on humans 14.1.2.4 Effect on nontarget organisms 14.2 Bioremediation 14.2.1 Bacteria in degradation of agrochemicals 14.2.2 Enzymes in degradation of agrochemicals 14.3 Vermiculture technology: green technology 14.3.1 Earthworm species suitable for biodegradation of pesticides 14.3.2 Mechanism of earthworm action in vermicomposting technology 14.3.2.1 Abiotic effects of earthworms on soil environment 14.3.2.2 Biotic effects of earthworms on soil 14.3.2.3 Earthworm-assisted bioremediation 14.4 Vermiremediation: a global movement for soil improvement 14.5 Global movement toward replacing chemical agriculture by ecological agriculture 14.6 Advantages/challenges in vermiremediation of agrochemicals 14.7 Conclusion References Further reading 15 Efficient phosphate recovery from fertilizer wastewater stream through simultaneous Ca and F ions removal 15.1 Introduction 15.2 Production of phosphate-based fertilizer and its typical phosphate effluent 15.2.1 Effect of Ca ions toward phosphate recovery 15.2.2 Effect of F ions toward phosphate recovery 15.3 Simultaneous Ca and F removal process 15.3.1 Electrodialysis 15.3.2 Electrocoagulation 15.3.3 Chemical precipitation 15.4 Chemistry of simultaneous Ca and F removal (struvite formation) 15.4.1 Electrodialysis 15.4.2 Electrocoagulation 15.4.2.1 Kinetic and modeling of electrocoagulation 15.4.2.2 Current density 15.4.2.3 Film thickness 15.5 Economic aspect of phosphate recovery through simultaneous Ca and F removal 15.6 Effect of Ca and F ions on environment 15.6.1 Calcium ions 15.6.2 Fluoride ions 15.6.3 Source of Ca and F in wastewater 15.6.3.1 Fluoride ions 15.6.3.2 Calcium ions References 16 African perspective of chemical usage in agriculture and horticulture—their impact on human health and environment 16.1 Introduction 16.1.1 Degradation of agrochemicals in the environment 16.1.2 Pesticides 16.1.2.1 Toxicology 16.1.2.2 Basics of pesticides in agrochemical industry 16.1.2.3 Biochemical pesticides 16.1.2.3.1 Microbial pesticides 16.1.2.3.2 Cosmetic pesticides 16.1.2.3.3 Indicator of pesticides exposure 16.1.2.3.4 Pesticide selection, dosage, and application methodology 16.1.3 Fertilizers 16.1.3.1 Biological substitutes for agrochemicals 16.1.3.1.1 Biopesticides 16.1.3.1.2 Development of natural pesticides 16.1.3.1.3 Pesticides from plant oils 16.1.3.2 Greener management of agrochemical pollution via eco-friendly approach 16.1.3.2.1 Synergic approach of academia and industries for sustainable development 16.1.3.2.2 Controlled-release formulations 16.2 African perspective 16.2.1 Pesticide utilization 16.2.2 Fertilizer utilization 16.2.3 Food security issues 16.2.4 Health and environment effects 16.2.5 Alternatives to pesticides and fertilizers 16.2.5.1 Organic agriculture and its limitations 16.2.5.2 The potential of biopesticides 16.2.5.3 The potential of biofertilizers 16.2.5.4 Essential oil alternatives 16.2.5.5 Gardening alternatives 16.2.6 Horticultural alternatives 16.2.7 Safer low-cost alternatives to agrochemicals for agricultural sustainability in Africa References Further reading 17 Chitosan conjugates, microspheres, and nanoparticles with potential agrochemical activity 17.1 Introduction 17.2 Chemistry and properties of chitosan 17.3 Strategies for the production of chitosan-based delivery systems 17.4 Emulsion cross-linking 17.5 Emulsion-droplet coalescence 17.6 Ionotropic gelation 17.7 Precipitation 17.8 Reverse micelles 17.9 Sieving method 17.10 Spray drying 17.11 Mode of action of chitosan in inducing resistance in plants 17.12 Applications in the agriculture sector 17.12.1 Biological activity of chitosan against plant pathogens 17.12.2 Combination of chitosan with phytohormones 17.12.3 Metal–chitosan conjugates 17.12.4 Combination of essential oils with chitosan 17.12.5 Combination of chitosan with other molecules 17.13 Chitosan for delivery of fertilizers and micronutrients 17.14 Chitosan-based delivery of synthetic and biopesticides for crop protection 17.15 Chitosan-based delivery of herbicide 17.16 Chitosan-assisted gene delivery 17.17 Concluding remarks Acknowledgments References 18 Advances in agrochemical remediation using nanoparticles 18.1 Introduction 18.2 Removal of agrochemicals with nanoparticles 18.3 Surface-engineered nanoparticles in agrochemical remediation 18.4 Nanotechnology for degradation of persistent agrochemicals 18.5 Agrochemical cleaning systems using nanocomposites 18.6 Outlook References 19 Nanotechnology and remediation of agrochemicals Abbreviations 19.1 Introduction 19.2 Remediation of agrochemicals assisted by nanotechnology 19.2.1 Adsorption processes 19.2.2 Nanofiltration 19.2.3 Advanced oxidation processes and their application in the processes of agrochemicals remediation 19.2.3.1 Heterogeneous AOPs 19.3 Alternative remediation procedures assisted by nanotechnology—phytoremediation, bioremediation 19.3.1 Nanophytoremediation 19.3.2 Nanobioremediation 19.4 Impact of nanobiotechnology in the prevention of environmental pollution in agriculture 19.4.1 Nanofertilizers 19.4.2 Nanopesticides 19.4.3 Nanosensors 19.5 Emerging risks of nanobiotechnology applications in remediation and agriculture 19.6 Conclusion Acknowledgments References 20 Nanotechnology for remediations of agrochemicals 20.1 Introduction 20.2 Conventional methods for removals of agrochemicals and the needs for nanotechnology 20.3 Inorganic nanomaterials 20.3.1 Metal- and metal oxide–based nanomaterials 20.3.1.1 Reductive destruction 20.3.1.1.1 Nanoscale zerovalent iron 20.3.1.1.2 Silver nanoparticles and gold nanoparticles 20.3.1.1.3 Nanocrystalline metal oxides as destructive adsorbents 20.3.1.2 Oxidative destruction 20.3.1.2.1 Titanium oxide 20.3.1.2.2 Zinc oxide 20.3.2 Silica-based nanomaterials 20.4 Carbon-based nanomaterials 20.4.1 Graphene 20.4.2 Carbon nanotubes 20.5 Conclusion References 21 Green technologies for the removal of agrochemicals by aquatic plants 21.1 Introduction 21.2 Removal of agrochemicals by aquatic plants 21.3 Pesticides 21.3.1 Organophosphorus compounds 21.3.2 Organochlorine compounds 21.3.3 Organochlorine and organophosphorus compounds 21.3.4 Pyrethroid compounds 21.3.5 Carbamates 21.3.6 Fungicides 21.3.7 Herbicides 21.4 Mechanism of uptake and transformation 21.5 Removal of agrochemical compounds by wetlands 21.6 Conclusion References 22 Mycoremediation of agrochemicals 22.1 Introduction 22.2 Mechanisms of toxicity of agrochemicals 22.3 Effect of agrochemicals 22.3.1 Effect on microorganisms 22.3.2 Effect on soil enzymes 22.3.3 Effect on annelids 22.3.4 Effect on arthropods 22.4 Physicochemical technologies available for degradation of agrochemicals 22.5 Biological approaches for decontamination 22.5.1 Fungi as effective means of bioremediation 22.5.2 Enzymatic degradation 22.6 Mechanism of fungal degradation of agrochemicals 22.7 Future perspectives 22.8 Conclusion Acknowledgments References Further reading 23 Biochar-mediated soils for efficient use of agrochemicals 23.1 Introduction 23.1.1 Influence from sources, properties, and production technologies 23.1.2 Biochar characteristics: surface area, surface functional groups 23.1.3 Cation-exchange capacity and charge characteristics 23.1.4 Biochar stability 23.2 Biochar benefits: abiotic soil components 23.2.1 Influence of biochar on soil physical properties 23.2.2 Influence of biochar on soil’s chemical properties 23.2.3 Sorption–desorption of pesticides 23.2.4 Retention and release of nutrients in biochar 23.3 Influence of microorganisms and fertility on biochar application 23.3.1 Habitat for soil organisms 23.3.2 Microorganism community and activity 23.4 Biochar on the accessibility of agrochemicals in soils 23.4.1 Bioavailability of agrochemical for plant uptake 23.4.2 Pesticides uptake by other soil fauna 23.5 Drawbacks and implication of biochar-amended soils 23.6 Future research needs References Index Back Cover