دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ISBN (شابک) : 9783030493660, 3030493660 ناشر: SPRINGER NATURE سال نشر: 2020 تعداد صفحات: 334 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب AGING AND HEARING : causes and consequences. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیری و شنیدن: علل و عواقب آن. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از زمان اولین ویرایش جلد سیستم شنوایی پیری (در سال 2009)، تحقیقات زیادی در علوم پایه، ترجمه و بالینی مربوط به تغییرات مرتبط با سن در ساختار و عملکرد سیستم شنوایی انجام شده است. تحقیقات جدید با پیشرفتهای فنی و مفهومی در علوم اعصاب شنیداری در سطوح مختلف از سلولها تا شناخت انجام شده است. فصلهای پیری و شنیدن: علل و پیامدها طیف وسیعی از موضوعات را در بر میگیرد و برای مخاطبان نسبتاً گستردهای جذاب است. هدف ما در این جلد گردآوری بحثهای پیشرفته در مورد پیشرفتهای جدید در تحقیقات پیری است که برای مخاطبان وسیعی جذاب خواهد بود و بهعنوان بهروزرسانی مهمی در مورد وضعیت فعلی تحقیقات در مورد سیستم شنوایی پیری عمل میکند. این به روز رسانی نه تنها شامل تحقیقات اخیر، بلکه در نظر گرفتن چگونگی انجام مطالعات انسانی و حیوانی یا تحقیقات ترجمه ای و پایه برای پیشرفت این زمینه است. این نسخه جدید یک مکمل طبیعی برای جلد قبلی SHAR در سیستم شنوایی پیری است که توسط گوردون-سالانت، فریسینا، پوپر و فی ویرایش شده است. مخاطبان هدف این جلد، دانشجویان فارغ التحصیل، محققان، و اساتید دانشگاهی از طیف وسیعی از رشته ها (روانشناسی، علوم شنوایی/ شنوایی شناسی، فیزیولوژی، علوم اعصاب، مهندسی) خواهند بود. همچنین برای شنوایی شناسان بالینی و همچنین برای محققانی که در صنعت دستگاه های شنوایی کار می کنند جذاب خواهد بود. افرادی که در کنفرانسهایی شرکت میکنند که توسط انجمن تحقیقات در گوش و حلق و بینی، انجمن آکوستیکال آمریکا، انجمن علوم اعصاب شناختی شنیداری، انجمن شنیداری آمریکا، انجمن علوم اعصاب آمریکا، انجمن گفتار، زبان و شنوایی آمریکا، و آکادمی شنواییشناسی آمریکا (در میان دیگران) شرکت میکنند. احتمالاً ارزشی در حجم پیدا می کند.
Since the first edition of the Aging Auditory System volume (in 2009), there has been a tremendous amount of research in basic, translational, and clinical sciences related to age-related changes in auditory system structure and function. The new research has been driven by technical and conceptual advances in auditory neuroscience at multiple levels ranging from cells to cognition. The chapters in Aging and Hearing: Causes and Consequences span a broad range of topics and appeal to a relatively wide audience. Our goal in this volume is to put together state-of-the-art discussions about new developments in aging research that will appeal to a broad audience, serving as an important update on the current state of research on the aging auditory system. This update includes not only the recent research, but also consideration of how human and animal studies or translational and basic research are working in tandem to advance the field. This new edition is a natural complement to the previous SHAR volume on the aging auditory system edited by Gordon-Salant, Frisina, Popper, and Fay. The target audience for this volume will be graduate students, researchers, and academic faculty from a range of disciplines (psychology, hearing science/audiology, physiology, neuroscience, engineering). It also will appeal to clinical audiologists as well as to researchers working in the hearing device industry. Individuals who attend conferences sponsored by the Association for Research in Otolaryngology, Acoustical Society of America, Auditory Cognitive Neuroscience Society, American Auditory Society, Society for Neuroscience, American Speech, Language and Hearing Association, and the American Academy of Audiology (among others) are likely to find value in the volume.
Series Preface Springer Handbook of Auditory Research Preface 1992 Volume Preface Contents Contributors Chapter 1: Listening to All Voices: Interdisciplinary Approaches to Understanding Hearing in Aging 1.1 Purpose of This Book 1.2 Chapter-by-Chapter Overview 1.3 Future Directions References Chapter 2: Genetic and Molecular Aspects of the Aging Auditory System 2.1 Introduction 2.2 Oxidative Stress 2.2.1 Generation of Reactive Oxygen Species by the Mitochondrial Electron Transport Chain 2.2.2 Influence of Aging on Antioxidant Defense 2.2.3 Influence of Aging on Gpx6, Txnrd1, Idh1, and Hspb1 Expression in Cochlea 2.2.4 Role of NRF2 in Reducing Oxidative Stress in Cochlea 2.2.5 Role of IDH2 in the Mitochondrial Antioxidant Defense in Cochlea 2.2.6 Role of SIRT3 in Enhancing the Mitochondrial Antioxidant Defense in Cochlea under Calorie Restriction 2.2.7 Role of SIRT1 in the Antioxidant Defense in Cochlea 2.2.8 Role of Citrate Synthase in the Maintenance of Mitochondrial Function in Cochlea 2.2.9 Role of Mitochondrial DNA Mutations in Cochlear Aging 2.3 Apoptosis 2.3.1 Two Major Pathways of Apoptosis 2.3.2 Influence of Aging on Apoptotic Genes in Cochlea 2.3.3 Role of BCL11b in Protecting Cochlear Hair Cells Against Apoptosis 2.3.4 Role of PTEN in Promoting Apoptotic Cell Death in Cochlea 2.3.5 Role of XIAP in Protecting Cochlear Hair Cells and Spiral Ganglion Neurons Against Apoptosis 2.4 Neurodegeneration 2.4.1 Neuronal Death, Neurodegenerative Diseases, and Hidden Hearing Loss 2.4.2 Role of Amyloid-β in Cochlear Neurodegeneration 2.4.3 Role of GIPC3 in the Protection of Spiral Ganglion Neurons 2.4.4 Neuroprotective Role of P2RX2 in Cochlea 2.4.5 Role of Estrogen in the Central and Peripheral Auditory Nervous Systems 2.4.5.1 ESRRβ, ESR2, and ESRRγ 2.4.5.2 WBP2 2.5 Development 2.5.1 Role of Growth Hormone in Cochlear Development 2.5.2 Role of RET in the Development of Cochlea and the Maintenance of Cochlear Function 2.5.3 Role of ISL1 in the Development of Cochlea and Maintenance of Cochlear Hair Cells 2.6 Immune Response 2.6.1 Aging of the Immune System 2.6.2 Neuroprotective Role of MIF in Cochlea 2.7 Candidate Genes Associated with AHL 2.7.1 Mouse Mutagenesis Screens 2.7.2 Genome-Wide Association Study 2.8 Recommendations for Future Research and Concluding Remarks 2.8.1 Gender Bias 2.8.2 Genetic Background 2.8.3 Age at ABR Testing 2.8.4 Concluding Remarks References Chapter 3: The Aging Cochlea and Auditory Nerve 3.1 Introduction 3.2 The Importance of Animal Models 3.3 Age-Related Perceptual Deficits: Cochlea or Brain? 3.4 The Nature of Age-Related Cochlear Pathology 3.4.1 Classifying Presbycusis 3.4.1.1 Hair Cells and Organ of Corti 3.4.1.2 Afferent Neurons 3.4.1.3 Cochlear Lateral Wall 3.4.1.4 Stria Vascularis and the Endocochlear Potential 3.4.1.5 Other Nonsensory Cells 3.5 Can Presbycusis Be Prevented by Preventing Injury? 3.5.1 Quiet-Aged Animals 3.5.2 Quiet-Aged Humans 3.6 Risk Factors for Presbycusis 3.6.1 Sex and Ethnicity 3.6.2 Lifestyle 3.6.3 Diet 3.6.4 Genetics and Epigenetics 3.7 Summary References Chapter 4: Age-Related Changes in the Auditory Brainstem and Inferior Colliculus 4.1 Introduction 4.2 Age-Related Changes in the Structure of the Cochlear Nucleus 4.3 Age-Related Changes in the Neurochemistry of the Cochlear Nucleus 4.4 Age-Related Changes in the Function of the Cochlear Nucleus 4.5 Age-Related Changes in the Structure of the Superior Olivary Complex 4.6 Age-Related Changes in the Neurochemistry of the Superior Olivary Complex 4.7 Age-Related Changes in the Function of the Superior Olivary Complex 4.8 Age-Related Changes in the Function of the Medial Olivocochlear Efferent System 4.9 Age-Related Changes in the Structure of the Inferior Colliculus 4.10 Age-Related Changes in the Neurochemistry of the Inferior Colliculus 4.11 Age-Related Changes in the Function of the Inferior Colliculus 4.12 Chapter Summary References Chapter 5: Age-Related Changes in the Primate Auditory Cortex 5.1 Introduction 5.1.1 Psychophysically Measured Age-Related Hearing Deficits 5.1.2 The Macaque Monkey as an Animal Model of Age-Related Hearing Loss 5.2 Effects on Subcortical Structures 5.2.1 Peripheral Effects 5.2.2 Anatomical Studies of Subcortical Areas 5.2.3 Implications of Histochemical Results 5.3 Physiological Studies in the Auditory Cortex 5.3.1 Spontaneous and Driven Activity 5.3.2 Spatial Processing 5.3.3 Temporal Processing 5.4 Summary References Chapter 6: The Aging Auditory System: Electrophysiology 6.1 Introduction 6.2 Auditory Nerve 6.3 Subcortical: Auditory Brainstem and Midbrain 6.3.1 Wave V of the Auditory Brainstem Response 6.3.2 Brainstem Potentials as Metrics of Temporal Processing 6.3.3 Environmental Enrichment: Brainstem Responses 6.3.4 Associations with Cognitive Decline: Brainstem Responses 6.4 Auditory Cortex 6.4.1 Associations with Temporal Processing: Cortical Responses 6.4.2 Associations with Neural Oscillations: Cortical Responses 6.4.3 Environmental Enrichment: Cortical Responses 6.4.4 Associations with Cognitive Decline: Cortical Responses 6.5 Conclusions and Future Directions References Chapter 7: Age-Related Changes in Segregation of Sound Sources 7.1 Introduction 7.2 Cues to Sound Source Segregation 7.2.1 Spectrotemporal Cues 7.2.2 Spatial Cues 7.2.3 Contextual Cues 7.3 Age-Related Changes in Sensitivity to Segregation Cues 7.3.1 Sensitivity to Temporal Cues 7.3.2 Sensitivity to Spectral Cues 7.3.3 Sensitivity to Spatial Cues 7.3.4 Sensitivity to Contextual Cues 7.4 Age-Related Changes in the Segregation of Speech from Competing Sounds 7.4.1 Segregation Based on Monaural Cues 7.4.2 Segregation Based on Binaural Cues 7.4.3 Segregation Based on Contextual Cues 7.5 Realistic Listening Environments 7.6 Conclusions and Future Directions References Chapter 8: Causes and Consequences of Age-Related Hearing Loss 8.1 Introduction 8.2 Who Has Age-Related Hearing Loss? 8.2.1 Measurement of Age-Related Hearing Loss 8.2.2 Prevalence (Existing Cases) of Age-Related Hearing Loss 8.2.3 Incidence (New Cases) of Age-Related Hearing Loss 8.3 What Increases Risk for Age-Related Hearing Loss? 8.3.1 Genetic Factors Associated with Age-Related Hearing Loss 8.3.2 Noise Exposure 8.3.3 Environmental Exposures 8.3.4 Medications and Radiation 8.3.5 Cardiovascular and Lifestyle Factors 8.4 What Are the Consequences of Age-Related Hearing Loss? 8.4.1 How Epidemiologic Evidence Is Evaluated to Establish Cause 8.4.2 Communication and Quality of Life 8.4.3 Cognition and Mental Health 8.4.4 Physical Function and Disability 8.4.5 Social Isolation and Loneliness 8.4.6 Health Resource Utilization 8.4.7 Impact of Hearing Aid Treatment 8.5 Summary References Chapter 9: Age-Related Changes in Speech Understanding: Peripheral Versus Cognitive Influences 9.1 Introduction 9.2 Peripheral and Central Issues 9.2.1 Peripheral Hearing Loss 9.2.2 Decline in Central/Temporal Processes 9.2.3 Effects of Decline in Central Auditory Temporal Processing on Speech Understanding in Quiet 9.2.4 Speech Stream Segregation and Decline in Central-Temporal Processing 9.2.5 Phonological Analysis and Lexical Processing 9.3 Cognitive Processes 9.3.1 Cognitive Change in Adult Aging 9.3.2 Cognition and Speech Understanding in Degraded and Complex Listening Environments 9.4 Working Memory, Linguistic Context, and Speech Understanding 9.4.1 The Ease of Language Understanding Model 9.4.2 False Hearing 9.5 The Cost of Listening Effort 9.6 Emerging Issues/New Directions 9.6.1 Aging, Cochlear Implants, and Speech Understanding 9.6.2 Language Background, Speech Understanding, and Aging 9.7 Final Comments References Chapter 10: Aging, Hearing Loss, and Listening Effort: Imaging Studies of the Aging Listener 10.1 Introduction 10.2 Neuroimaging Methods for Auditory Research in Older Adults 10.2.1 Spatial-Temporal Tradeoffs 10.2.2 Measurement Noise 10.2.3 Acoustic Noise 10.3 Theories of Effortful Listening 10.4 Theories of Age-Related Changes in Effortful Listening 10.5 Neuroimaging Studies of the Impact of Aging on Auditory Processing 10.6 Neuroimaging Studies of the Impact of Aging on Linguistic Processing 10.7 Neuroimaging Studies of the Impact of Aging on Executive Functioning 10.7.1 Working Memory 10.7.2 Attention 10.7.2.1 Orienting 10.7.2.2 Selective Attention 10.7.2.3 Adaptive Control 10.8 Neuroimaging Studies of the Impact of Aging on Motivation and Arousal 10.8.1 Value of Communication 10.8.2 Sustained Attention, Vigilance, and Arousal 10.9 Clinical Implications and Future Directions 10.9.1 Targeted Assessments 10.9.2 Targeted Interventions 10.10 Summary References Chapter 11: Functional Consequences of Impaired Hearing in Older Adults and Implications for Intervention 11.1 Introduction 11.2 The World Health Organization International Classification of Functioning, Disability, and Health 11.2.1 Hearing Impairment 11.2.1.1 Pure-Tone Audiometric Profiles 11.2.1.2 Speech Understanding 11.2.2 Activity Limitations and Participation Restrictions 11.2.2.1 Interview Data from Older Adults and Their Communication Partners 11.2.2.2 Questionnaire Data from Older Adults and Their Communication Partners 11.2.2.3 Associations of Hearing Impairment with Self-Reported Disability 11.2.3 Contextual Factors 11.2.3.1 Personal Factors 11.2.3.1.1 Suprathreshold Deficits in Auditory Processing 11.2.3.1.2 Comorbidities 11.2.3.2 Environmental Factors 11.3 Interventions 11.3.1 Interventions at the Impairment Level 11.3.1.1 Hearing Aids 11.3.1.2 Hearing Aid Uptake and Usage 11.3.1.3 Efficacy of Hearing Aids 11.3.1.4 Contextual Factors Influencing Hearing Aid Uptake and Usage 11.3.2 Interventions at the Activity and Participation Levels 11.3.2.1 Communication Education 11.3.2.2 Social Psychological Interventions 11.3.2.3 Cognitive Intervention 11.3.2.4 Environmental Interventions 11.4 Chapter Summary References Chapter 12: Emerging Clinical Translational Treatment Strategies for Age-Related Hearing Loss 12.1 Introduction 12.2 Chemical and Drug Approaches 12.2.1 Pioneering Explorations of Drugs to Treat Age-Related Hearing Loss 12.2.1.1 Age-Related Mitochondrial Dysfunction: Oxidative Stress and Reactive Oxygen Species 12.2.1.2 Disruption of Calcium Regulation with Age Can Result in Ca2+ Cellular Toxicity 12.2.1.3 Hormonal Interventions: Sodium and Potassium Regulation in the Cochlea 12.2.1.4 Hormonal Interventions: Is Hormone Replacement Therapy the Answer? 12.2.1.5 The First Phase 2 FDA Clinical Trial for Age-Related Hearing Loss 12.2.2 Technological Advances for New Therapeutic Compound Delivery to the Cochlea 12.2.2.1 Programmable Micropumps for Cochlear Drug Delivery 12.2.2.2 Injectable Hydrogels for Inner Ear Applications 12.2.2.3 Acoustic Approaches: Sound Supplementation Strategies 12.3 Ear and Brain Training Techniques 12.4 Summary References