دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Susheela Hooda, Vandana Mohindru Sood, Yashwant Singh, Sandeep Dalal, Manu Sood سری: ناشر: Wiley-Scrivener سال نشر: 2023 تعداد صفحات: 386 [388] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Agile Software Development: Trends, Challenges and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توسعه نرم افزار چابک: روندها، چالش ها و برنامه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
AGILE SOFTWARE DEVELOPMENTA عنوانی منحصر به فرد که طیف وسیعی از فرآیندهای توسعه نرم افزار چابک را از مفاهیم اساسی گرفته تا بالاترین سطوح برنامه های کاربردی مانند تجزیه و تحلیل نیاز، تست نرم افزار، تضمین کیفیت و مدیریت ریسک را معرفی می کند. توسعه نرم افزار چابک (ASD) به یک فناوری محبوب تبدیل شده است زیرا روش های آن برای هر پارادایم برنامه نویسی اعمال می شود. در فرآیند توسعه نرمافزار اهمیت دارد زیرا بر تحویل تدریجی، همکاری تیمی، برنامهریزی مستمر و یادگیری بیش از ارائه همه چیز در یک زمان و نزدیک به پایان تأکید دارد. Agile در نتیجه استفاده از چارچوب ها، روش ها و تکنیک های مختلف برای بهبود کیفیت نرم افزار محبوبیت پیدا کرده است. اسکرام یک چارچوب چابک اصلی است که به طور گسترده توسط جامعه توسعه نرم افزار پذیرفته شده است. تکنیک های فراابتکاری در فرآیند توسعه نرم افزار چابک برای بهبود کیفیت و قابلیت اطمینان نرم افزار استفاده شده است. این تکنیکها نه تنها کیفیت و قابلیت اطمینان را بهبود میبخشند، بلکه موارد آزمایشی را نیز بهبود میبخشند و در نتیجه نرمافزاری مقرونبهصرفه و مقرونبهصرفه ایجاد میکنند. با این حال، بسیاری از چالشهای تحقیقاتی مهم باید مورد توجه قرار گیرند تا چنین قابلیتهای ASD عملی شوند. این کتاب با استفاده از تکنیکهای متنوع، اصول راهنما، هوش مصنوعی، محاسبات نرم و یادگیری ماشینی به دنبال مطالعه یافتههای تحقیقات نظری و فنآوری در تمام جنبههای ASD است. همچنین، آخرین روندها، چالش ها و برنامه های کاربردی در زمینه ASD را روشن می کند. این کتاب با استفاده از روشها، اصول، هوش مصنوعی، محاسبات نرم و یادگیری ماشین، نتایج تحقیقات نظری و فنی را در تمام جنبههای توسعه نرمافزار چابک بررسی میکند. حضار این کتاب برای دانشمندان کامپیوتر و مهندسین نرم افزار در زمینه تحقیقات و صنعت طراحی شده است. دانشجویان تحصیلات تکمیلی و کارشناسی ارشد نیز کتاب را در دسترس خواهند یافت.
AGILE SOFTWARE DEVELOPMENTA unique title that introduces the whole range of agile software development processes from the fundamental concepts to the highest levels of applications such as requirement analysis, software testing, quality assurance, and risk management. Agile Software Development (ASD) has become a popular technology because its methods apply to any programming paradigm. It is important in the software development process because it emphasizes incremental delivery, team collaboration, continuous planning, and learning over delivering everything at once near the end. Agile has gained popularity as a result of its use of various frameworks, methods, and techniques to improve software quality. Scrum is a major agile framework that has been widely adopted by the software development community. Metaheuristic techniques have been used in the agile software development process to improve software quality and reliability. These techniques not only improve quality and reliability but also test cases, resulting in cost-effective and time-effective software. However, many significant research challenges must be addressed to put such ASD capabilities into practice. With the use of diverse techniques, guiding principles, artificial intelligence, soft computing, and machine learning, this book seeks to study theoretical and technological research findings on all facets of ASD. Also, it sheds light on the latest trends, challenges, and applications in the area of ASD. This book explores the theoretical as well as the technical research outcomes on all the aspects of Agile Software Development by using various methods, principles, artificial intelligence, soft computing, and machine learning. Audience The book is designed for computer scientists and software engineers both in research and industry. Graduate and postgraduate students will find the book accessible as well.
Cover Title Page Copyright Page Contents Preface Chapter 1 Agile Software Development in the Digital World – Trends and Challenges 1.1 Introduction 1.1.1 Organization of Chapter 1.2 Related Work 1.2.1 Teamwork Development 1.2.2 Project-Based Learning (PJBL) 1.2.3 Planning the Agile Software Development Methodologies 1.3 Agile Architecture Trends in the Digital World 1.3.1 Agile Implementation at Scale 1.4 Challenges Faced in the Digital World Through Agile Software Development 1.4.1 Challenges for Small to Mid-Scale and Large-Scale Agile Projects 1.4.2 Reported Challenges – Cause and Potential Solutions 1.5 Generic Guidelines to Improve the Agile Transformation in Digital World 1.6 Conclusion and Future Perspective References Chapter 2 Agile Framework Adaptation Issues in Various Sectors 2.1 Introduction 2.1.1 Human-Human Linkages 2.2 Agile Followers 2.3 Proposed Work 2.4 Resolution Matrix 2.5 Conclusion and Future Work References Chapter 3 Vulnerability Assessment Tools for IoT: An Agile Approach 3.1 Introduction 3.2 Agile Methodology: SCRUM 3.3 Scrum Agile Benefits for IoT 3.4 Critical Factors for Implementing Agile Methodology 3.5 Conclusion References Chapter 4 Interoperable Agile IoT 4.1 Introduction 4.2 Agile Software Development 4.2.1 Scrum Methodology 4.2.2 Extreme Programming (XP) 4.2.3 Adaptive Software Development (ASD) 4.2.4 Dynamic Software Development Method (DSDM) 4.2.5 Feature Driven Development (FDD) 4.2.6 Kanban Method 4.3 Internet of Things (IoT) 4.4 Agile–IoT Project for Interoperability 4.5 Agile–IoT Project for Smart Domains 4.6 INTER-IoT Framework for Interoperability 4.6.1 Interoperability Aspects 4.7 Conclusion References Chapter 5 Functional and Non-Functional Requirements in Agile Software Development 5.1 Introduction 5.2 Agile Requirements Gathering 5.3 Types of Requirements 5.4 Functional Requirement Gathering 5.5 Non-Functional Requirement Gathering 5.6 Testing Functional and Non-Functional Requirements 5.7 Conclusion and Future Scope References Chapter 6 Minimizing Cost, Effort, and Implementation Complexity for Adopting Security Requirements in an Agile Development Process for Cyber-Physical Systems 6.1 Introduction 6.2 Literature Review 6.3 Proposed Methodology 6.4 Conclusion References Chapter 7 A Systematic Literature Review on Test Case Prioritization Techniques 7.1 The Motivation for Systematic Review 7.1.1 Existing Literature Reviews on Test Case Prioritization 7.1.2 Resources Used for SLR 7.1.3 Search Criteria 7.1.4 Research Questions 7.2 Results 7.2.1 What is the Current Status of Test Case Prioritization? 7.2.2 How Various Test Case Prioritization Techniques are Classified? And What are Those Classifications? 7.2.2.1 Code Coverage-Based 7.2.2.2 Requirements-Based 7.2.2.3 Model-Based Prioritization 7.2.2.4 Time and Cost-Aware Prioritization 7.2.2.5 History-Based Prioritization 7.2.2.6 Risk Factor-Based Prioritization 7.2.2.7 Fault Localization-Based 7.2.2.8 Soft Computing Techniques-Based 7.2.2.9 Web-Based 7.2.2.10 Object Oriented Testing-Based 7.2.2.11 Similarity-Based 7.2.2.12 Combinatorial Interaction Testing-Based 7.2.2.13 Machine Learning-Based 7.2.2.14 Adaptive Random Testing (ART)-Based 7.2.2.15 Prioritization for Continuous Integration (CI) and Software Product Lines (SPL) 7.2.2.16 Hybrid Approaches 7.2.2.17 Comparative Studies 7.2.2.18 Surveys and Reviews 7.3 What Subject Systems Have Been Used to Evaluate Test Case Prioritization Techniques? What is the Type of Programming Platform for Subject Systems? 7.3.1 What is Research Status in Model-Based Test Case Prioritization? 7.3.2 What Evaluation Criterion Has Been Used to Evaluate Model-Based Prioritization and How are The Results Reported? 7.3.3 How Model-Based Test Case Prioritization Has Evolved Over the Years? Which Studies Have Discussed the Benefits of Model-Based Test Case Prioritization in Object-Oriented Systems? 7.3.4 What Subject Systems Are Used to Evaluate the Model-Based Test Case Prioritization? 7.3.5 What is the Research Status of Test Case Prioritization for Object-Oriented Testing? 7.3.6 What Specific Parameters of Object-Oriented Testing Have Been Highlighted by Various Studies? 7.3.7 What Studies Exist Based on Multi-Objective Algorithms for Test Case Prioritization in Object-Oriented Testing? 7.3.8 Whether Comparative Analysis of Multi-Objective Algorithms for Test Case Prioritization in Object-Oriented Testing Has Been Performed? And What are The Results? 7.4 Research Gaps References Chapter 8 A Systematic Review of the Tools and Techniques in Distributed Agile Software Development 8.1 Introduction 8.1.1 Why Agile? 8.1.2 Distributed Agile Software Development (DASD) 8.1.3 Challenges of DASD 8.1.3.1 Documentation 8.1.3.2 Pair Programming 8.1.3.3 Different Working Hours 8.1.3.4 Training on Agile Practices 8.1.3.5 Distribution of Work 8.2 Literature Review 8.3 Techniques for DASD 8.3.1 Effective Communication 8.3.2 Face Visits or Contact Visits 8.3.3 Team Distribution 8.3.4 Distribution of Work 8.3.5 Documentation 8.4 Tools for DASD 8.4.1 Monday.com 8.4.1.1 Features 8.4.1.2 Pricing 8.4.2 nTask 8.4.2.1 Features 8.4.2.2 Pricing 8.4.3 Jira 8.4.3.1 Pricing 8.4.3.2 Version Control 8.4.3.3 Key Features 8.4.4 ActiveCollab 8.4.4.1 Pricing 8.4.4.2 Features 8.4.5 Pivotal Tracker 8.4.5.1 Features 8.4.5.2 Pricing 8.4.6 Clarizen 8.4.6.1 Software Features 8.4.7 Axosoft 8.4.7.1 Software Features 8.4.7.2 Pricing 8.4.8 MeisterTask 8.4.8.1 Software Features 8.4.8.2 Pricing 8.4.9 GitLab 8.4.9.1 Features 8.4.9.2 Pricing 8.4.10 Productboard 8.4.10.1 Features 8.4.11 ZohoSprints 8.4.11.1 Features 8.4.11.2 Pricing 8.4.12 Taskworld 8.4.12.1 Features 8.4.12.2 Pricing 8.4.13 CoSchedule 8.4.13.1 Features 8.4.13.2 Pricing 8.4.14 Nostromo 8.4.14.1 Features 8.4.14.2 Pricing 8.4.15 Todo.vu 8.4.15.1 Features 8.4.15.2 Pricing 8.4.16 VersionOne 8.4.16.1 Pricing 8.4.16.2 Features 8.4.17 ProofHub 8.4.17.1 Features 8.4.17.2 Pricing 8.5 Conclusion References Chapter 9 Distributed Agile Software Development (DASD) Process 9.1 Introduction 9.2 Distributed Software Development 9.2.1 Factors Influencing Agile Distributed Software Development 9.3 Distributed Agile Software Development Team 9.3.1 Distributed Agile Development/Teams 9.3.1.1 Some Common Practices for Agile Teams are Specified as Below 9.4 Scrum in Global Software Development (GSD) 9.4.1 Aim and Objectives of Scrum Practices in GSD 9.4.2 Background 9.4.3 Scrum Practices in GSD 9.5 Tools and Techniques for Agile Distributed Development 9.6 Conclusion References Chapter 10 Task Allocation in Agile-Based Distributed Project Development Environment 10.1 Introduction 10.1.1 Traditional Software Development 10.1.2 Agile Software Development (ASD) 10.1.3 Distributed Software Development 10.1.4 Motivation and Goal 10.2 Task Allocation 10.2.1 Traditional Task Allocation Methods 10.2.2 Need of Machine Learning in Task Allocation 10.3 Machine Learning-Based Task Allocation Model 10.4 Conclusion References Chapter 11 Software Quality Management by Agile Testing 11.1 Introduction 11.2 A Brief Introduction to JMeter 11.3 Review of Literature 11.4 Performance Testing Using JMeter 11.5 Proposed Work 11.6 Results and Discussions 11.7 Conclusion References Chapter 12 A Deep Drive into Software Development Agile Methodologies for Software Quality Assurance 12.1 Introduction 12.2 Background Work 12.2.1 Factors of Quality Assurance in Agility 12.3 Understanding Agile Software Methodologies 12.3.1 Need for Agile Software Methodology Framework 12.4 Agile Methodology Evaluation Framework 12.4.1 Extreme Programming (XP) 12.4.2 Scrum 12.4.3 Lean Development 12.4.4 Crystal Methodology 12.4.5 Kanban Methodology 12.4.6 Feature Driven Development (FDD) Methodology 12.4.7 Dynamic System Development Method (DSDM) 12.5 Agile Software Development – Issues and Challenges 12.6 Conclusion References Chapter 13 Factors and Techniques for Software Quality Assurance in Agile Software Development 13.1 Introduction 13.1.1 Values of the Agile Manifesto 13.1.2 The Twelve Agile Manifesto Principles 13.1.3 Agile for Software Quality Assurance 13.2 Literature Review 13.3 Agile Factors in Quality Assurance 13.3.1 Success Factors 13.3.2 Failure Factors 13.4 Quality Assurance Techniques 13.5 Challenges and Limitations of Agile Technology 13.6 Conclusion and Future Scope References Chapter 14 Classification of Risk Factors in Distributed Agile Software Development Based on User Story 14.1 Introduction 14.2 Software Risk Management 14.2.1 Risk Assessment 14.3 Literature Review 14.3.1 Review 14.3.2 Risk Factors in Distributed Agile Software Development 14.3.3 Current Challenges 14.4 User Story-Based Classification of Risk Factors in Distributed Agile Software Development 14.4.1 User Stories 14.4.2 Classification of Risk Factors on the Basis of User Story 14.5 Future Scope 14.6 Conclusion References Chapter 15 Software Effort Estimation with Machine Learning – A Systematic Literature Review 15.1 Introduction 15.2 Method 15.2.1 Questionnaires for Research 15.2.2 Search Process 15.2.3 Criteria for Inclusion and Removal 15.2.4 Data Gathering 15.2.5 Analyzing Data 15.3 Result 15.3.1 Findings 15.4 Discussion 15.4.1 What Kinds of Research are Being Conducted? 15.4.2 Who is the Research Leader in SLR? 15.4.3 The Study’s Limitations 15.5 Conclusion 15.6 Future Scope References Chapter 16 Improving the Quality of Open Source Software 16.1 Introduction 16.2 Literature Review 16.3 Research Issues 16.4 Research Method and Data Collection 16.5 Results and Discussion 16.6 Conclusion and Future Scope References Chapter 17 Artificial Intelligence Enables Agile Software Development Life Cycle 17.1 Introduction 17.2 Literature Survey 17.3 Proposed Work 17.3.1 Advantages and Limitations of Agile Software Development 17.4 Conclusion References Chapter 18 Machine Learning in ASD: An Intensive Study of Automated Disease Prediction System 18.1 Introduction 18.2 Overview of ML 18.2.1 Types of Machine Learning 18.2.1.1 Supervised Machine Learning 18.2.1.2 Unsupervised Machine Learning 18.2.1.3 Reinforcement ML 18.2.2 Popular ML Algorithm 18.2.2.1 Artificial Neural Network (ANN) 18.2.2.2 K-Means Clustering Algorithm 18.2.2.3 Hierarchical Clustering 18.2.2.4 Linear Regression in Machine Learning 18.2.2.5 Support Vector Machine (SVM) 18.2.2.6 Decision Tree 18.2.2.7 Random Forests 18.2.2.8 Agile Software Development (ASD) 18.3 Case Study 18.3.1 Methodology 18.3.2 Result Analysis 18.4 Conclusion References Index EULA