دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020 نویسندگان: Albert Causo (editor), Joseph Durham (editor), Kris Hauser (editor), Kei Okada (editor), Alberto Rodriguez (editor) سری: ISBN (شابک) : 3030356787, 9783030356781 ناشر: Springer سال نشر: 2020 تعداد صفحات: 156 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Advances on Robotic Item Picking: Applications in Warehousing & E-Commerce Fulfillment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در انتخاب اقلام رباتیک: برنامه های کاربردی در انبارداری و تحقق تجارت الکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Team CVAP\'s Mobile Picking System at the Amazon Picking Challenge 2015 1 Introduction 2 Platform 3 Strategy 4 Behavior Trees 4.1 Semantic 4.2 BTs in APC 5 Shelf Localization and Base Movement 6 Vision 6.1 Simtrack 6.2 Volumetric Reasoning 7 Picking and Placing 8 Conclusion References Team UAlberta: Amazon Picking Challenge Lessons 1 Introduction 2 Strategy 2.1 Pulling–Pushing Mechanism 3 System Description 3.1 Pulling Routine 3.2 Centering Routine 3.3 Grasping Routine 4 Conclusions References A Soft Robotics Approach to Autonomous Warehouse Picking 1 Introduction 2 Robot Design 2.1 Qbmoves 2.2 Pisa/IIT SoftHand 3 Perception 3.1 Point Cloud Database 3.2 Perception Algorithm 4 Motion Planning and Control 4.1 Motion Planner 4.2 Grasping Strategies 5 Conclusions and Lesson Learned References Top-Down Approach to Object Identification in a Cluttered Environment Using Single RGB-D Image and Combinational Classifier for Team Nanyang\'s Robotic Picker at the Amazon Picking Challenge 2015 1 Introduction 2 The Picking Problem 3 The Robotic Picking System 4 Top-Down Identification Method 4.1 Feature Extraction 4.2 Probabilistic Modeling 5 Results and Discussion 5.1 Image Identification 5.2 Competition Performance 6 Conclusion and Future Work References Team KTH\'s Picking Solution for the Amazon Picking Challenge 2016 1 Introduction 2 System Overview and High-Level Logic 2.1 Stowing Strategy 2.2 Picking Strategy 3 Perception 3.1 Shelf Pose Estimation and Tote Calibration 3.2 Object Detection 4 Motion Planning, Pick and Place 4.1 Motion Planning 4.1.1 Outside-Shelf Motion Planning 4.1.2 Inside-Shelf Motion Planning 4.2 Pick and Place 5 Conclusions References End-to-End Learning of Object Grasp Poses in the Amazon Robotics Challenge 1 Introduction 2 Related Work 2.1 Amazon Robotics Challenge 2.2 Object Grasp Pose Synthesis 3 System Overview 3.1 System Setup 3.2 Process Flow 4 Vision Subsystem 4.1 Model Overview 4.2 Data Collection 4.3 Pre-training by CG Images 4.4 Training 4.5 Inference 5 Results 6 Future Work 7 Conclusion References A Systems Engineering Analysis of Robot Motion for Team Delft\'s APC Winner 2016 1 Introduction 2 A Framework to Analyze an Autonomous Robot Design 2.1 Functional Analysis Under the ISE&PPOOA Method 2.2 Levels of Robot Automation 3 Motion Subsystem Design 3.1 Motion Requirements 3.2 Robot Manipulator 3.3 Motion Software Module Design 3.4 Offline Coarse Motions 3.5 Grasping and Manipulation: Fine Motions 3.5.1 Collision Avoidance 3.5.2 Generation of the Complete Grasp Plan 3.6 Trajectory Execution 3.6.1 Trajectory Stitching 3.6.2 Input/Output Synchronization 4 Discussion and Concluding Remarks 4.1 Concluding Remarks References Standing on Giant\'s Shoulders: Newcomer\'s Experience from the Amazon Robotics Challenge 2017 1 Introduction 2 Technical Challenges 3 Approach 3.1 Past Competitions 3.2 Design Philosophy 3.3 Development Strategy 4 Proposed Solution 4.1 Suction Tool 4.2 Storage System 5 Conclusion Appendix References Team C2M: Two Cooperative Robots for Picking and Stowing in Amazon Picking Challenge 2016 1 Introduction 2 Two Cooperative Industrial Robots 2.1 Robot System 2.2 Features 3 Vision Strategy 3.1 Grasping Position Based Object Recognition by CNN 3.2 Picking Strategy 3.3 Stowing Strategy 4 Experiments 4.1 Dataset 4.2 Accuracy for Object Recognition 4.3 Accuracy for Grasping Position Detection 4.4 Computational Time 5 Conclusion References Description of IITK-TCS System for ARC 2017 1 Introduction 2 Object Recognition Algorithms 3 Custom Gripper Design 4 Grasping Algorithm 5 Robot-Camera Calibration 6 Motion Planning with Obstacle Avoidance 7 Software Architecture for Implementation 8 System Performance 9 Conclusions References Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017 1 Introduction 2 Background 3 Cartman: System Overview and Design 4 Mechanical Design 4.1 Specifications 4.2 Mechanical Components 4.3 Software and Electrical Components 4.4 Multi-Modal End-Effector 5 Perception System 5.1 Perception Pipeline 5.2 Perception Hardware 5.3 Semantic Segmentation 5.3.1 Fast Data Collection and Quick Item Learning 5.3.2 Implementation and Training Details 5.4 Active Perception 5.4.1 Multi-View 5.4.2 Item Reclassification 5.5 Grasp Synthesis 6 Design Philosophy 6.1 End-to-End Testing 6.2 Modularity 6.3 Rapid Iteration 7 System Performance 7.1 Amazon Robotics Challenge Finals 7.2 Long-Term Testing 7.3 Error Detection and Recovery 8 Conclusions References Index