دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Cagdas Hakan Aladag
سری: Advances in Time Series Forecasting
ISBN (شابک) : 9781681085289, 1681085291
ناشر:
سال نشر: 2017
تعداد صفحات: 196
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Advances in Time Series Forecasting به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در پیش بینی سری های زمانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
CONTENTS PREFACE List of Contributors Fuzzy Time Series Forecasting Models Evaluation Based on A Novel Distance Measure Cagdas Hakan Aladag1,* and I. Burhan Turksen2 INTRODUCTION THE PROPOSED DISTANCE MEASURE AND THE SUGGESTED PERFORMANCE CRITERION THE APPLICATION CONCLUDING REMARKS CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES A New Fuzzy Time Series Forecasting Model with Neural Network Structure Eren Bas* and Erol Egrioglu INTRODUCTION PROPOSED METHOD APPLICATION CONCLUSIONS AND DISCUSSIONS CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Two Factors High Order Non Singleton Type-1 and Interval Type-2 Fuzzy Systems for Forecasting Time Series with Genetic Algorithm M.H. Fazel Zarandi1, *, M. Yalinezhaad1 and I.B. Turksen2 INTRODUCTION Interval Type-2 Fuzzy Logic Sets and Systems Type-2 Fuzzy Logic Sets Non Singleton Interval Type-2 Fuzzy Logic Systems Determination of Footprints of Uncertainty (Umf and Lmf) in Interval Type-2 Fuzzy Logic Sets Fundamental Concepts of Fuzzy Time Series Proposed Two Factors High Order Non Singletontype-1 and Interval Type-2 Fuzzy Time Series Systems Tuning Method for Type-1 and Interval Type-2 FTSs with Genetic Algorithm Experimental Results by Temperature Prediction and TAIEX Forecasting Temperature Prediction with Proposed Method TAIEX Forecasting By Applying the Proposed Method with Genetic Algorithm GA Procedure Selection and Pairing Crossover Mutation and Reinsertion Termination Condition Type Reduction and Defuzzification CONCLUSION AND FUTURE WORKS CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES A New Neural Network Model with Deterministic Trend and Seasonality Components for Time Series Forecasting Erol Egrioglu1,*, Cagdas Hakan Aladag2, Ufuk Yolcu3, Eren Bas1 and Ali Z. Dalar1 INTRODUCTION CLASSICAL TIME SERIES FORECASTING MODELS ARTIFICIAL NEURAL NETWORKS FOR FORECASTING TIME SERIES A NEW ARTIFICIAL NEURAL NETWORK WITH DETERMINISTIC COMPONENTS APPLICATIONS CONCLUSION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES A Fuzzy Time Series Approach Based on Genetic Algorithm with Single Analysis Process Ozge Cagcag Yolcu* INTRODUCTION FUZZY TIME SERIES RELATED METHODS Genetic Algorithm (GA) Single Multiplicative Neuron Model PROPOSED METHOD APPLICATIONS CONCLUSION AND DISCUSSION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Forecasting Stock Exchanges with Fuzzy Time Series Approach Based on Markov Chain Transition Matrix Cagdas Hakan Aladag1,* and Hilal Guney2 INTRODUCTION FUZZY TIME SERIES TSAUR ‘S FUZZY TIME SERIES MARKOV CHAIN MODEL THE IMPLEMENTATION CONCLUSION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES A New High Order Multivariate Fuzzy Time Series Forecasting Model Ufuk Yolcu* INTRODUCTION RELATED METHODOLOGY The Fuzzy C-Means (FCM) Clustering Method Single Multiplicative Neuron Model Artificial Neural Network (SMN-ANN) Fuzzy Time Series THE PROPOSED METHOD APPLICATIONS CONCLUSIONS AND DISCUSSION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Fuzzy Functions Approach for Time Series Forecasting Ali Z. Dalar1,*, Erol Egrioglu1, Ufuk Yolcu2 and Cagdas Hakan Aladag3 INTRODUCTION TYPE-1 FUZZY FUNCTIONS APPROACH IMPLEMENTATION Australian Beer Consumption Time Series Turkey Electricity Consumption Time Series CONCLUSIONS CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Recurrent ANFIS for Time Series Forecasting Busenur Sarıca1,*, Erol Eğrioğlu2 and Barış Aşıkgil3 INTRODUCTION RECURRENT ADAPTIVE NETWORK FUZZY INFERENCE SYSTEMS APPLICATION CONCLUSION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES A Hybrid Method for Forecasting of Fuzzy Time Series Eren Bas* INTRODUCTION THE METHODS USED IN THIS STUDY Fuzzy Time Series Genetic Algorithm Differential Evolution Algorithm PROPOSED METHOD APPLICATION Analysis of Canadian Lynx Data CONCLUSIONS CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES SUBJECT INDEX