ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advances in Sustainable Machining and Manufacturing Processes

دانلود کتاب پیشرفت در فرآیندهای ماشینکاری و تولید پایدار

Advances in Sustainable Machining and Manufacturing Processes

مشخصات کتاب

Advances in Sustainable Machining and Manufacturing Processes

ویرایش:  
نویسندگان: , ,   
سری: Mathematical Engineering, Manufacturing, and Management Sciences 
ISBN (شابک) : 1032081651, 9781032081656 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 327
[328] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 46 Mb 

قیمت کتاب (تومان) : 37,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Advances in Sustainable Machining and Manufacturing Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پیشرفت در فرآیندهای ماشینکاری و تولید پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پیشرفت در فرآیندهای ماشینکاری و تولید پایدار



این متن مروری عمیق بر پایداری در فرآیندهای ماشینکاری، چالش‌های حین ماشینکاری مواد برش سخت و روش‌های مختلف ماشین‌کاری سبز در دستیابی به پایداری ارائه می‌دهد.

موضوعات مهمی را مورد بحث قرار می‌دهد. از جمله ماشینکاری سبز و پایدار، ماشینکاری خشک، ابزارهای روکش دار برش بافتی برای ماشینکاری، ماشینکاری مبتنی بر روانکارهای جامد، ماشینکاری با گاز خنک، خنک کننده برودتی برای ماشینکاری هوشمند، شبکه عصبی مصنوعی برای ماشینکاری، ماشینکاری مبتنی بر داده های بزرگ و ماشینکاری هوشمند ترکیبی.

این کتاب-

  • پیشرفت‌ها در ماشین‌کاری پایدار مانند ماشین‌کاری با گاز خنک، ماشین‌کاری نزدیک به خشک و روانکاری با حداقل مقدار را پوشش می‌دهد.
  • استفاده از داده های بزرگ، یادگیری ماشین و هوش مصنوعی را برای فرآیندهای ماشینکاری بررسی می کند.
  • مطالعات موردی و طراحی تجربی و همچنین نتایج با تجزیه و تحلیل با تمرکز بر دستیابی را ارائه می‌کند. پایداری
  • در مورد فرآیندهای ماشینکاری مبتنی بر یادگیری ماشین و هوش مصنوعی بحث می‌کند.
  • برای درک بهتر مفاهیم، ​​آخرین کاربردهای تولید پایدار را پوشش دهید.

متن عمدتاً برای دانشجویان ارشد، دانشجویان کارشناسی ارشد و محققان در زمینه‌های مکانیک، تولید، صنعتی، مهندسی تولید و مواد نوشته شده است. علوم پایه.


توضیحاتی درمورد کتاب به خارجی

This text provides an in-depth overview of sustainability in machining processes, challenges during machining of difficult-to-cut materials and different ways of green machining in achieving sustainability.

It discusses important topics including green and sustainable machining, dry machining, textured cutting coated tools for machining, solid lubricants-based machining, gas-cooled machining, cryogenic cooling for intelligent machining, artificial neural network for machining, big data based machining, and hybrid intelligent machining.

This book-

  • Covers advances in sustainable machining such as gas-cooled machining, near dry machining, and minimum quantity lubrication.
  • Explores use of big data, machine learning and artificial intelligence for machining processes.
  • Provides case studies and experimental design as well as results with analysis focusing on achieving sustainability.
  • Discusses artificial intelligence and machine learning based machining processes.
  • Cover the latest applications of sustainable manufacturing for a better understanding of the concepts.

The text is primarily written for senior undergraduate, graduate students, and researchers in the fields of mechanical, manufacturing, industrial, production engineering and materials science.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgment
Editors
Contributors
Introduction
Part I: Sustainable Machining
	Chapter 1: Challenges in Machining of Advanced Materials
		1.1 Introduction
		1.2 Machining Process and Materials
			1.2.1 Cutting Tool
			1.2.2 Material Selection
			1.2.3 Types of Machining Techniques
		1.3 Tool Wear/Life Span and Commercial Metal Cutting
		1.4 Machinability
		1.5 Machining Process Selection
			1.5.1 Challenges Related to Machining
			1.5.2 Practical Aspects and Developments
		1.6 Conclusion
		References
	Chapter 2: Machining by Advanced Ceramics Tools: Challenges and Opportunities
		2.1 Introduction
		2.2 Cutting Tool Based on Ceramic Materials
			2.2.1 Ceramic Tools Based on Aluminum Oxide
			2.2.2 Ceramics Tools Based on Silicon Nitride
			2.2.3 Ceramic Tools Based on Composite Materials
			2.2.4 Enhance the Cutting Properties with Coatings
			2.2.5 Textured-Surface Ceramic Cutting Tools
		2.3 Effects of Methods of Manufacturing on the Properties of Ceramic Cutting Tools
			2.3.1 Contact Manufacturing
				2.3.1.1 Hot Pressing
				2.3.1.2 Spark Plasma Sintering
			2.3.2 Noncontact Manufacturing Methods
				2.3.2.1 Microwave Sintering
				2.3.2.2 Self-Propagation High-Temperature Synthesis
		2.4 Effect of Different Processing Conditions on Ceramic Cutting Tools
		2.5 Conclusion
		2.6 Future Scope
		References
	Chapter 3: Characterization and Evaluation of Eco-Friendly Cutting Fluids
		3.1 Introduction
		3.2 Characterization of Novel Cutting Fluids
		3.3 Basic Characterization Studies
			3.3.1 Density
			3.3.2 Viscosity and Rheological Studies
			3.3.3 Specific Heat
			3.3.4 Thermal Conductivity
			3.3.5 Stability and Biodegradability Test
			3.3.6 pH Test
			3.3.7 Foam Test
			3.3.8 Refractive Index
			3.3.9 Thermogravimetric Analysis
			3.3.10 Fourier-Transform Infrared Spectroscopy Analysis
		3.4 Advanced Characterization Studies
			3.4.1 Tribological Performance Studies of Developed Cutting Fluid
				3.4.1.1 Anti-Wear Test
				3.4.1.2 Coefficient of Friction
				3.4.1.3 Wear Surface Characteristics
			3.4.2 Wettability Study
			3.4.3 Corrosion Study
			3.4.4 Acute Skin Irritation Test
		3.5 Summary
		References
	Chapter 4: Advances in Textured Cutting Tools for Machining
		4.1 Introduction
		4.2 Texturing Processes
			4.2.1 Micro-Plasma Transferred Arc
			4.2.2 Micro Grinding
			4.2.3 Micro-Electrical-Discharge Machining
			4.2.4 Focused Ion Beam Machining
			4.2.5 Ultrasonic Machining
			4.2.6 Micro Indentation
			4.2.7 Chemical Etching
			4.2.8 Laser Surface Texturing
		4.3 Advances in the Machining Performance Using Textured Cutting Tools
		4.4 Summary and Conclusion
		References
	Chapter 5: Advances in MQL Machining
		5.1 Introduction
			5.1.1 Heat Generation in Machining
			5.1.2 Role of MWF in Machining
			5.1.3 Flood Lubrication/Cooling System
			5.1.4 Dry Machining System
			5.1.5 Need for Alternative System
			5.1.6 MQL and Its Advantages
			5.1.7 MQL: A Comparison with Other Systems
		5.2 Sustainable Manufacturing and Clean Machining
			5.2.1 Challenges in Sustainability and MQL
				5.2.1.1 Cooling Effect
				5.2.1.2 Workpiece that is Difficult to Machine
				5.2.1.3 Formation of Chips
				5.2.1.4 Selection of Optimized Parameters
				5.2.1.5 Economic Factors
				5.2.1.6 Machining and High-Speed Machining
				5.2.1.7 Formation of Mist
				5.2.1.8 Lack of Numerically Simulated Data
		5.3 Advances in MQL
			5.3.1 Advancement of MQL Concerning Industry 4.0 Standards
			5.3.2 Awareness among Researchers
			5.3.3 SMEET Framework
			5.3.4 MQL Supply System
		5.4 Conclusion
		References
	Chapter 6: Nanofluids Application for Cutting Fluids
		6.1 Introduction
		6.2 Machining and Sustainability
			6.2.1 Dry Machining and Semi-Dry Machining
				6.2.1.1 Dry Machining
				6.2.1.2 Semi-Dry Machining
		6.3 Application of MQL in Machining Processes
		6.4 MQL and Machining Parameters
		6.5 Improving MQL Lubrication
		6.6 Nature of Heat Transfer in Nanoparticles
		6.7 Nanomaterials for Nanofluids
			6.7.1 Nonmetallic Nanoparticle Dispersion
			6.7.2 Metallic Nanoparticle Dispersion
			6.7.3 Carbon Nanotube Dispersion
		6.8 Hybrid Nanofluids
		6.9 Machine Tools Application
			6.9.1 Grinding
			6.9.2 Turning
			6.9.3 Milling
			6.9.4 Drilling
		6.10 Nanofluids: Effect on Machining Parameters
			6.10.1 Cutting Force
			6.10.2 Surface Roughness
			6.10.3 Machining Temperature
			6.10.4 Tool Wear
			6.10.5 Environmental Aspects
		6.11 Difficulties of Applying Nanofluids in Machining
		6.12 Conclusion
		References
	Chapter 7: Nanofluids for Machining in the Era of Industry 4.0
		7.1 Introduction
		7.2 Preparation of the Nanofluids
		7.3 Types of Nanofluids
			7.3.1 Graphene-Based Nanofluids
			7.3.2 Carbon Nanotube–Based Nanofluids
			7.3.3 Al 2 O 3 -Based Nanofluids
			7.3.4 MoS 2 -Based Nanofluids
			7.3.5 Pentaerythritol Rosin Ester–Based Nanofluids
		7.4 Sustainability Evaluation of Nanofluids
		7.5 Applications of Nanofluids in Modern Machining Operations
		7.6 Conclusion and Future Trends
		Acknowledgments
		References
	Chapter 8: Ionic Liquids as a Potential Sustainable Green Lubricant for Machining in the Era of Industry 4.0
		8.1 Introduction
		8.2 Fundamental of MWFs
			8.2.1 Definition, Purpose, and Types of MWFs
			8.2.2 Supply Methods of MWFs
		8.3 What Are Ionic Liquids?
		8.4 Potential of ILs in Machining
		8.5 Effect of ILs on Machining Parameters
			8.5.1 Effect of ILs on Machining Forces
			8.5.2 Effect of ILs on Surface Roughness
			8.5.3 Mechanism of Tool Wear Lubricated with ILs
			8.5.4 Physicochemical Properties of ILs on Machining Conditions
			8.5.5 Effect of ILs Concentrations on Machining
		8.6 Conclusion and Outlook
		References
	Chapter 9: Sustainable Electrical Discharge Machining Process: A Pathway
		9.1 Introduction
		9.2 Description of EDM Process
			9.2.1 Conventional EDM and Its Variants
			9.2.2 Micro-EDM Process
		9.3 Classification of Dielectric
			9.3.1 Hydrocarbon-Based Dielectric
			9.3.2 Water-Based Dielectric
			9.3.3 Gaseous-Based Dielectric
		9.4 Environmentally Friendly Dielectrics for Achieving Sustainability in EDM
			9.4.1 Bio-Friendly Alternatives
		9.5 Development of Dry to Near-Dry EDM for Sustainability
			9.5.1 Dry EDM
			9.5.2 Near-Dry EDM
		9.6 Conclusion
		References
	Chapter 10: Sustainable Abrasive Jet Machining
		10.1 Introduction
		10.2 Why Is AJM Preferred?
		10.3 Evaluation of AJM in Terms of Environmentally Friendly Cutting
		10.4 Theory of AJM
		10.5 Machining Quality and Performance in AJM
		10.6 Concluding Remarks
		References
	Chapter 11: Artificial Neural Networks for Machining
		11.1 Introduction to Artificial Neural Networks
		11.2 Why Are ANNs Used?
		11.3 ANNs in Machining?
		11.4 ANN Applications in Machining
		11.5 Concluding Remarks
		References
	Chapter 12: Machining and Vibration Behavior of Ti-TiB Composites Processed through Powder Metallurgy Techniques
		12.1 Introduction
		12.2 Materials and Methods
		12.3 Results and Discussion
			12.3.1 Variation of the MRR with Respect to Current and Gap Voltage
			12.3.2 Variation of the TWR with Respect to Current and Gap Voltage
			12.3.3 Variation of Machining Time with Respect to Current and Gap Voltage
			12.3.4 Damping Analysis
		12.4 Conclusion
		References
	Chapter 13: Numerical Analysis of Machining Forces and Shear Angle during Dry Hard Turning
		13.1 Introduction
		13.2 Experimental Procedures
			13.2.1 2D FEM Formulation of Orthogonal Cutting
			13.2.2 Boundary Conditions
			13.2.3 Element Formulation
			13.2.4 Material Model
			13.2.5 Contact Properties
			13.2.6 ALE Adaptive Meshing Technique
		13.3 Results and Discussion
			13.3.1 Cutting Force Model Validation
			13.3.2 Variation of Shear Angle
		13.4 Conclusion
		References
	Chapter 14: Machining Performance Evaluation of Titanium Biomaterial, Ti6Al4V in CNC cylindrical turning Using CBN Insert
		14.1 Introduction
		14.2 Literature Review
		14.3 Materials and Methods
			14.3.1 Input Machining Parameters
				14.3.1.1 Cutting Speed
				14.3.1.2 Depth of Cut
				14.3.1.3 Feed
			14.3.2 Selection of Response Variables
				14.3.2.1 Machining Forces
				14.3.2.2 Surface Roughness
				14.3.2.3 Acoustic Emission Signal Parameters
			14.3.3 Selection of Workpiece Material
			14.3.4 Tool Material
			14.3.5 Cutting Tool and Tool Holder
			14.3.6 Experimental Procedure
			14.3.7 Machine Tool and Measuring Instruments
				14.3.7.1 CNC Lathe
				14.3.7.2 Cutting Force Dynamometer
				14.3.7.3 Surface Roughness Tester
				14.3.7.4 Digital Microscope
		14.4 Results and Discussion
			14.4.1 Cutting Force Analysis
			14.4.2 Surface Roughness Analysis
			14.4.3 Tool Wear Analysis
			14.4.4 AE Analysis
		14.5 Conclusion
		14.6 Future Scope
		References
Part II: Manufacturing Processes
	Chapter 15: Industrial Internet of Things in Manufacturing
		15.1 Introduction
		15.2 IIOT Architecture, Communication Protocols, and Data Management
			15.2.1 IIOT Architectures
			15.2.2 Communication Protocols
			15.2.3 Data Management in the IIOT
		15.3 Industrial Automation Software Design Methodologies
			15.3.1 Component-Based Software Systems
			15.3.2 Multi-Agent-Based Models
			15.3.3 SOA
			15.3.4 MDE
		15.4 Future Scope
		15.5 Conclusion
		References
	Chapter 16: Improvement in Forming Characteristics Resulted in Incremental Sheet Forming
		16.1 Introduction
		16.2 Forming Characteristics in ISF
		16.3 Deformation Mechanism and Its Influence on Forming Characteristics
		16.4 Experimental and Numerical Investigations on Forming Characteristics
		16.5 Forming Characteristics as a Function of Tool Path and Forming Strategies
		16.6 Improvement in Process Capabilities by Process Variations
			16.6.1 Heat-Assisted Modifications
			16.6.2 Process Modification
		16.7 Conclusion
		References
	Chapter 17: Deformation Mechanism of Polymers, Metals, and Their Composites in Dieless Forming Operations
		17.1 Introduction
		17.2 Deformation Mechanism in Metals and Metal Alloys
		17.3 ISF of Polymers and Composites: Feasibility and Deformation Mechanisms
			17.3.1 ISF Studies in Polymers
			17.3.2 ISF Applied to Composites
		17.4 Conclusion
		References
	Chapter 18: Sustainable Polishing of Directed Energy Deposition–Based Cladding Using Micro-Plasma Transferred Arc
		18.1 Introduction
			18.1.1 Ultrasonic Surface Treatment
			18.1.2 Machining
			18.1.3 Surface Finishing Using Energy Beam Irradiation
		18.2 Experimental Details
			18.2.1 Experimental Apparatus and Materials Used
			18.2.2 Process Parameters for Experimentation
			18.2.3 Investigation of Performance Characteristics
		18.3 Result and Discussions
			18.3.1 Microstructure and Microhardness
			18.3.2 Scratch and Wear Resistance
			18.3.3 Surface Deviation
		18.4 Conclusion
		References
Index




نظرات کاربران