دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Kishor Kumar Gajrani, Arbind Prasad, Ashwani Kumar سری: Mathematical Engineering, Manufacturing, and Management Sciences ISBN (شابک) : 1032081651, 9781032081656 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 327 [328] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 46 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advances in Sustainable Machining and Manufacturing Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در فرآیندهای ماشینکاری و تولید پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن مروری عمیق بر پایداری در فرآیندهای ماشینکاری،
چالشهای حین ماشینکاری مواد برش سخت و روشهای مختلف
ماشینکاری سبز در دستیابی به پایداری ارائه میدهد.
موضوعات مهمی را مورد بحث قرار میدهد. از جمله ماشینکاری سبز و
پایدار، ماشینکاری خشک، ابزارهای روکش دار برش بافتی برای
ماشینکاری، ماشینکاری مبتنی بر روانکارهای جامد، ماشینکاری با
گاز خنک، خنک کننده برودتی برای ماشینکاری هوشمند، شبکه عصبی
مصنوعی برای ماشینکاری، ماشینکاری مبتنی بر داده های بزرگ و
ماشینکاری هوشمند ترکیبی.
این کتاب-
متن عمدتاً برای دانشجویان ارشد، دانشجویان کارشناسی ارشد و محققان در زمینههای مکانیک، تولید، صنعتی، مهندسی تولید و مواد نوشته شده است. علوم پایه.
This text provides an in-depth overview of
sustainability in machining processes, challenges during
machining of difficult-to-cut materials and different ways of
green machining in achieving sustainability.
It discusses important topics including green and sustainable
machining, dry machining, textured cutting coated tools for
machining, solid lubricants-based machining, gas-cooled
machining, cryogenic cooling for intelligent machining,
artificial neural network for machining, big data based
machining, and hybrid intelligent machining.
This book-
The text is primarily written for senior undergraduate, graduate students, and researchers in the fields of mechanical, manufacturing, industrial, production engineering and materials science.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Acknowledgment Editors Contributors Introduction Part I: Sustainable Machining Chapter 1: Challenges in Machining of Advanced Materials 1.1 Introduction 1.2 Machining Process and Materials 1.2.1 Cutting Tool 1.2.2 Material Selection 1.2.3 Types of Machining Techniques 1.3 Tool Wear/Life Span and Commercial Metal Cutting 1.4 Machinability 1.5 Machining Process Selection 1.5.1 Challenges Related to Machining 1.5.2 Practical Aspects and Developments 1.6 Conclusion References Chapter 2: Machining by Advanced Ceramics Tools: Challenges and Opportunities 2.1 Introduction 2.2 Cutting Tool Based on Ceramic Materials 2.2.1 Ceramic Tools Based on Aluminum Oxide 2.2.2 Ceramics Tools Based on Silicon Nitride 2.2.3 Ceramic Tools Based on Composite Materials 2.2.4 Enhance the Cutting Properties with Coatings 2.2.5 Textured-Surface Ceramic Cutting Tools 2.3 Effects of Methods of Manufacturing on the Properties of Ceramic Cutting Tools 2.3.1 Contact Manufacturing 2.3.1.1 Hot Pressing 2.3.1.2 Spark Plasma Sintering 2.3.2 Noncontact Manufacturing Methods 2.3.2.1 Microwave Sintering 2.3.2.2 Self-Propagation High-Temperature Synthesis 2.4 Effect of Different Processing Conditions on Ceramic Cutting Tools 2.5 Conclusion 2.6 Future Scope References Chapter 3: Characterization and Evaluation of Eco-Friendly Cutting Fluids 3.1 Introduction 3.2 Characterization of Novel Cutting Fluids 3.3 Basic Characterization Studies 3.3.1 Density 3.3.2 Viscosity and Rheological Studies 3.3.3 Specific Heat 3.3.4 Thermal Conductivity 3.3.5 Stability and Biodegradability Test 3.3.6 pH Test 3.3.7 Foam Test 3.3.8 Refractive Index 3.3.9 Thermogravimetric Analysis 3.3.10 Fourier-Transform Infrared Spectroscopy Analysis 3.4 Advanced Characterization Studies 3.4.1 Tribological Performance Studies of Developed Cutting Fluid 3.4.1.1 Anti-Wear Test 3.4.1.2 Coefficient of Friction 3.4.1.3 Wear Surface Characteristics 3.4.2 Wettability Study 3.4.3 Corrosion Study 3.4.4 Acute Skin Irritation Test 3.5 Summary References Chapter 4: Advances in Textured Cutting Tools for Machining 4.1 Introduction 4.2 Texturing Processes 4.2.1 Micro-Plasma Transferred Arc 4.2.2 Micro Grinding 4.2.3 Micro-Electrical-Discharge Machining 4.2.4 Focused Ion Beam Machining 4.2.5 Ultrasonic Machining 4.2.6 Micro Indentation 4.2.7 Chemical Etching 4.2.8 Laser Surface Texturing 4.3 Advances in the Machining Performance Using Textured Cutting Tools 4.4 Summary and Conclusion References Chapter 5: Advances in MQL Machining 5.1 Introduction 5.1.1 Heat Generation in Machining 5.1.2 Role of MWF in Machining 5.1.3 Flood Lubrication/Cooling System 5.1.4 Dry Machining System 5.1.5 Need for Alternative System 5.1.6 MQL and Its Advantages 5.1.7 MQL: A Comparison with Other Systems 5.2 Sustainable Manufacturing and Clean Machining 5.2.1 Challenges in Sustainability and MQL 5.2.1.1 Cooling Effect 5.2.1.2 Workpiece that is Difficult to Machine 5.2.1.3 Formation of Chips 5.2.1.4 Selection of Optimized Parameters 5.2.1.5 Economic Factors 5.2.1.6 Machining and High-Speed Machining 5.2.1.7 Formation of Mist 5.2.1.8 Lack of Numerically Simulated Data 5.3 Advances in MQL 5.3.1 Advancement of MQL Concerning Industry 4.0 Standards 5.3.2 Awareness among Researchers 5.3.3 SMEET Framework 5.3.4 MQL Supply System 5.4 Conclusion References Chapter 6: Nanofluids Application for Cutting Fluids 6.1 Introduction 6.2 Machining and Sustainability 6.2.1 Dry Machining and Semi-Dry Machining 6.2.1.1 Dry Machining 6.2.1.2 Semi-Dry Machining 6.3 Application of MQL in Machining Processes 6.4 MQL and Machining Parameters 6.5 Improving MQL Lubrication 6.6 Nature of Heat Transfer in Nanoparticles 6.7 Nanomaterials for Nanofluids 6.7.1 Nonmetallic Nanoparticle Dispersion 6.7.2 Metallic Nanoparticle Dispersion 6.7.3 Carbon Nanotube Dispersion 6.8 Hybrid Nanofluids 6.9 Machine Tools Application 6.9.1 Grinding 6.9.2 Turning 6.9.3 Milling 6.9.4 Drilling 6.10 Nanofluids: Effect on Machining Parameters 6.10.1 Cutting Force 6.10.2 Surface Roughness 6.10.3 Machining Temperature 6.10.4 Tool Wear 6.10.5 Environmental Aspects 6.11 Difficulties of Applying Nanofluids in Machining 6.12 Conclusion References Chapter 7: Nanofluids for Machining in the Era of Industry 4.0 7.1 Introduction 7.2 Preparation of the Nanofluids 7.3 Types of Nanofluids 7.3.1 Graphene-Based Nanofluids 7.3.2 Carbon Nanotube–Based Nanofluids 7.3.3 Al 2 O 3 -Based Nanofluids 7.3.4 MoS 2 -Based Nanofluids 7.3.5 Pentaerythritol Rosin Ester–Based Nanofluids 7.4 Sustainability Evaluation of Nanofluids 7.5 Applications of Nanofluids in Modern Machining Operations 7.6 Conclusion and Future Trends Acknowledgments References Chapter 8: Ionic Liquids as a Potential Sustainable Green Lubricant for Machining in the Era of Industry 4.0 8.1 Introduction 8.2 Fundamental of MWFs 8.2.1 Definition, Purpose, and Types of MWFs 8.2.2 Supply Methods of MWFs 8.3 What Are Ionic Liquids? 8.4 Potential of ILs in Machining 8.5 Effect of ILs on Machining Parameters 8.5.1 Effect of ILs on Machining Forces 8.5.2 Effect of ILs on Surface Roughness 8.5.3 Mechanism of Tool Wear Lubricated with ILs 8.5.4 Physicochemical Properties of ILs on Machining Conditions 8.5.5 Effect of ILs Concentrations on Machining 8.6 Conclusion and Outlook References Chapter 9: Sustainable Electrical Discharge Machining Process: A Pathway 9.1 Introduction 9.2 Description of EDM Process 9.2.1 Conventional EDM and Its Variants 9.2.2 Micro-EDM Process 9.3 Classification of Dielectric 9.3.1 Hydrocarbon-Based Dielectric 9.3.2 Water-Based Dielectric 9.3.3 Gaseous-Based Dielectric 9.4 Environmentally Friendly Dielectrics for Achieving Sustainability in EDM 9.4.1 Bio-Friendly Alternatives 9.5 Development of Dry to Near-Dry EDM for Sustainability 9.5.1 Dry EDM 9.5.2 Near-Dry EDM 9.6 Conclusion References Chapter 10: Sustainable Abrasive Jet Machining 10.1 Introduction 10.2 Why Is AJM Preferred? 10.3 Evaluation of AJM in Terms of Environmentally Friendly Cutting 10.4 Theory of AJM 10.5 Machining Quality and Performance in AJM 10.6 Concluding Remarks References Chapter 11: Artificial Neural Networks for Machining 11.1 Introduction to Artificial Neural Networks 11.2 Why Are ANNs Used? 11.3 ANNs in Machining? 11.4 ANN Applications in Machining 11.5 Concluding Remarks References Chapter 12: Machining and Vibration Behavior of Ti-TiB Composites Processed through Powder Metallurgy Techniques 12.1 Introduction 12.2 Materials and Methods 12.3 Results and Discussion 12.3.1 Variation of the MRR with Respect to Current and Gap Voltage 12.3.2 Variation of the TWR with Respect to Current and Gap Voltage 12.3.3 Variation of Machining Time with Respect to Current and Gap Voltage 12.3.4 Damping Analysis 12.4 Conclusion References Chapter 13: Numerical Analysis of Machining Forces and Shear Angle during Dry Hard Turning 13.1 Introduction 13.2 Experimental Procedures 13.2.1 2D FEM Formulation of Orthogonal Cutting 13.2.2 Boundary Conditions 13.2.3 Element Formulation 13.2.4 Material Model 13.2.5 Contact Properties 13.2.6 ALE Adaptive Meshing Technique 13.3 Results and Discussion 13.3.1 Cutting Force Model Validation 13.3.2 Variation of Shear Angle 13.4 Conclusion References Chapter 14: Machining Performance Evaluation of Titanium Biomaterial, Ti6Al4V in CNC cylindrical turning Using CBN Insert 14.1 Introduction 14.2 Literature Review 14.3 Materials and Methods 14.3.1 Input Machining Parameters 14.3.1.1 Cutting Speed 14.3.1.2 Depth of Cut 14.3.1.3 Feed 14.3.2 Selection of Response Variables 14.3.2.1 Machining Forces 14.3.2.2 Surface Roughness 14.3.2.3 Acoustic Emission Signal Parameters 14.3.3 Selection of Workpiece Material 14.3.4 Tool Material 14.3.5 Cutting Tool and Tool Holder 14.3.6 Experimental Procedure 14.3.7 Machine Tool and Measuring Instruments 14.3.7.1 CNC Lathe 14.3.7.2 Cutting Force Dynamometer 14.3.7.3 Surface Roughness Tester 14.3.7.4 Digital Microscope 14.4 Results and Discussion 14.4.1 Cutting Force Analysis 14.4.2 Surface Roughness Analysis 14.4.3 Tool Wear Analysis 14.4.4 AE Analysis 14.5 Conclusion 14.6 Future Scope References Part II: Manufacturing Processes Chapter 15: Industrial Internet of Things in Manufacturing 15.1 Introduction 15.2 IIOT Architecture, Communication Protocols, and Data Management 15.2.1 IIOT Architectures 15.2.2 Communication Protocols 15.2.3 Data Management in the IIOT 15.3 Industrial Automation Software Design Methodologies 15.3.1 Component-Based Software Systems 15.3.2 Multi-Agent-Based Models 15.3.3 SOA 15.3.4 MDE 15.4 Future Scope 15.5 Conclusion References Chapter 16: Improvement in Forming Characteristics Resulted in Incremental Sheet Forming 16.1 Introduction 16.2 Forming Characteristics in ISF 16.3 Deformation Mechanism and Its Influence on Forming Characteristics 16.4 Experimental and Numerical Investigations on Forming Characteristics 16.5 Forming Characteristics as a Function of Tool Path and Forming Strategies 16.6 Improvement in Process Capabilities by Process Variations 16.6.1 Heat-Assisted Modifications 16.6.2 Process Modification 16.7 Conclusion References Chapter 17: Deformation Mechanism of Polymers, Metals, and Their Composites in Dieless Forming Operations 17.1 Introduction 17.2 Deformation Mechanism in Metals and Metal Alloys 17.3 ISF of Polymers and Composites: Feasibility and Deformation Mechanisms 17.3.1 ISF Studies in Polymers 17.3.2 ISF Applied to Composites 17.4 Conclusion References Chapter 18: Sustainable Polishing of Directed Energy Deposition–Based Cladding Using Micro-Plasma Transferred Arc 18.1 Introduction 18.1.1 Ultrasonic Surface Treatment 18.1.2 Machining 18.1.3 Surface Finishing Using Energy Beam Irradiation 18.2 Experimental Details 18.2.1 Experimental Apparatus and Materials Used 18.2.2 Process Parameters for Experimentation 18.2.3 Investigation of Performance Characteristics 18.3 Result and Discussions 18.3.1 Microstructure and Microhardness 18.3.2 Scratch and Wear Resistance 18.3.3 Surface Deviation 18.4 Conclusion References Index