دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Priyanka Sharma. Deepesh Machiwal
سری:
ISBN (شابک) : 012820673X, 9780128206737
ناشر: Elsevier
سال نشر: 2021
تعداد صفحات: 386
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advances in Streamflow Forecasting: From Traditional to Modern Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفتها در پیشبینی جریان: از رویکردهای سنتی تا مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front-Matter_2021_Advances-in-Streamflow-Forecasting Advances in Streamflow Forecasting Copyright_2021_Advances-in-Streamflow-Forecasting Copyright Dedication_2021_Advances-in-Streamflow-Forecasting Dedication Contributors_2021_Advances-in-Streamflow-Forecasting Contributors About-the-editors_2021_Advances-in-Streamflow-Forecasting About the editors Foreword_2021_Advances-in-Streamflow-Forecasting Foreword Preface_2021_Advances-in-Streamflow-Forecasting Preface Acknowledgment_2021_Advances-in-Streamflow-Forecasting Acknowledgment Chapter-1---Streamflow-forecasting--overview-of-ad_2021_Advances-in-Streamfl 1. Streamflow forecasting: overview of advances in data-driven techniques 1.1 Introduction 1.2 Measurement of streamflow and its forecasting 1.3 Classification of techniques/models used for streamflow forecasting 1.4 Growth of data-driven methods and their applications in streamflow forecasting 1.4.1 Time series modeling 1.4.2 Artificial neural network 1.4.3 Other AI techniques 1.4.4 Hybrid data-driven techniques 1.5 Comparison of different data-driven techniques 1.6 Current trends in streamflow forecasting 1.7 Key challenges in forecasting of streamflows 1.8 Concluding remarks References Chapter-2---Streamflow-forecasting-at-large-time-s_2021_Advances-in-Streamfl 2. Streamflow forecasting at large time scales using statistical models 2.1 Introduction 2.2 Overview of statistical models used in forecasting 2.2.1 Forecasting in general 2.2.1.1 ARIMA models 2.2.1.2 Exponential smoothing models 2.2.1.3 General literature 2.2.1.4 Literature in hydrology 2.3 Theory 2.3.1 ARIMA models 2.3.1.1 Definition 2.3.1.2 Forecasting with ARIMA models 2.3.2 Exponential smoothing models 2.4 Large-scale applications at two time scales 2.4.1 Application 1: multi-step ahead forecasting of 270 time series of annual streamflow 2.4.2 Application 2: multi-step ahead forecasting of 270 time series of monthly streamflow 2.5 Conclusions Conflicts of interest Acknowledgment References Chapter-3---Introduction-of-multiple-multivariate-linea_2021_Advances-in-Str 3. Introduction of multiple/multivariate linear and nonlinear time series models in forecasting streamflow process 3.1 Introduction 3.1.1 Review of MLN time series models 3.2 Methodology 3.2.1 VAR/VARX model 3.2.2 Model building procedure 3.2.3 MGARCH model 3.2.3.1 Diagonal VECH model 3.2.3.2 Testing conditional heteroscedasticity 3.2.4 Case study 3.3 Application of VAR/VARX approach 3.3.1 The VAR model 3.3.2 The VARX model 3.4 Application of MGARCH approach 3.5 Comparative evaluation of models’ performances 3.6 Conclusions References Chapter-4---Concepts--procedures--and-applications-of-_2021_Advances-in-Stre 4. Concepts, procedures, and applications of artificial neural network models in streamflow forecasting 4.1 Introduction 4.2 Procedure for development of artificial neural network models 4.2.1 Structure of artificial neural network models 4.2.1.1 Neurons and connection formula 4.2.1.2 Transfer function 4.2.1.3 Architecture of neurons 4.2.2 Network training processes 4.2.2.1 Unsupervised training method 4.2.2.2 Supervised training method 4.2.3 Artificial neural network to approximate a function 4.2.3.1 Step 1: preprocessing of data 4.2.3.1.1 Data normalization techniques 4.2.3.1.2 Principal component analysis 4.2.3.2 Step 2: choosing the best network architecture 4.2.3.3 Step 3: postprocessing of data 4.3 Types of artificial neural networks 4.3.1 Multilayer perceptron neural network 4.3.2 Static and dynamic neural network 4.3.3 Statistical neural networks 4.4 An overview of application of artificial neural network modeling in streamflow forecasting References Chapter-5---Application-of-different-artificial-neu_2021_Advances-in-Streamf 5. Application of different artificial neural network for streamflow forecasting 5.1 Introduction 5.2 Development of neural network technique 5.2.1 Multilayer perceptron 5.2.2 Recurrent neural network 5.2.3 Long short-term memory network 5.2.4 Gated recurrent unit 5.2.5 Convolutional neural network 5.2.6 WaveNet 5.3 Artificial neural network in streamflow forecasting 5.4 Application of ANN: a case study of the Ganges River 5.5 ANN application software and programming language 5.6 Conclusions 5.7 Supplementary information References Chapter-6---Application-of-artificial-neural-network-an_2021_Advances-in-Str 6. Application of artificial neural network and adaptive neuro-fuzzy inference system in streamflow forecasting 6.1 Introduction 6.2 Theoretical description of models 6.2.1 Artificial neural network 6.2.2 Adaptive neuro-fuzzy inference system 6.3 Application of ANN and ANFIS for prediction of peak discharge and runoff: a case study 6.3.1 Study area description 6.3.2 Methodology 6.3.2.1 Principal component analysis 6.3.2.2 Artificial neural network 6.3.2.3 Adaptive neuro-fuzzy inference system 6.3.2.4 Assessment of model performance by statistical indices 6.3.2.5 Sensitivity analysis 6.4 Results and discussion 6.4.1 Results of ANN modeling 6.4.2 Results of ANFIS modeling 6.5 Conclusions References Chapter-7---Genetic-programming-for-streamflow-forecast_2021_Advances-in-Str 7. Genetic programming for streamflow forecasting: a concise review of univariate models with a case study 7.1 Introduction 7.2 Overview of genetic programming and its variants 7.2.1 Classical genetic programming 7.2.2 Multigene genetic programming 7.2.3 Linear genetic programming 7.2.4 Gene expression programming 7.3 A brief review of the recent studies 7.4 A case study 7.4.1 Study area and data 7.4.2 Criteria for evaluating performance of models 7.5 Results and discussion 7.6 Conclusions References Chapter-8---Model-tree-technique-for-streamflow-forecas_2021_Advances-in-Str 8. Model tree technique for streamflow forecasting: a case study in sub-catchment of Tapi River Basin, India 8.1 Introduction 8.2 Model tree 8.3 Model tree applications in streamflow forecasting 8.4 Application of model tree in streamflow forecasting: a case study 8.4.1 Study area 8.4.2 Methodology 8.5 Results and analysis 8.5.1 Selection of input variables 8.5.2 Model configuration 8.5.3 Model calibration and validation 8.5.4 Sensitivity analysis of model configurations towards model performance 8.5.4.1 Influence of input variable combinations 8.5.4.2 Influence of model tree variants 8.5.4.3 Influence of data proportioning 8.5.5 Selection of best-fit model for streamflow forecasting 8.6 Summary and conclusions Acknowledgments References Chapter-9---Averaging-multiclimate-model-prediction-_2021_Advances-in-Stream 9. Averaging multiclimate model prediction of streamflow in the machine learning paradigm 9.1 Introduction 9.2 Salient review on ANN and SVR modeling for streamflow forecasting 9.3 Averaging streamflow predicted from multiclimate models in the neural network framework 9.4 Averaging streamflow predicted by multiclimate models in the framework of support vector regression 9.5 Machine learning–averaged streamflow from multiple climate models: two case studies 9.6 Conclusions References Chapter-10---Short-term-flood-forecasting-using-artific_2021_Advances-in-Str 10. Short-term flood forecasting using artificial neural networks, extreme learning machines, and M5 model tree 10.1 Introduction 10.2 Theoretical background 10.2.1 Artificial neural networks 10.2.2 Extreme learning machines 10.2.3 M5 model tree 10.3 Application of ANN, ELM, and M5 model tree techniques in hourly flood forecasting: a case study 10.3.1 Study area and data 10.3.2 Methodology 10.4 Results and discussion 10.5 Conclusions References Chapter-11---A-new-heuristic-model-for-monthly-streamf_2021_Advances-in-Stre 11. A new heuristic model for monthly streamflow forecasting: outlier-robust extreme learning machine 11.1 Introduction 11.2 Overview of extreme learning machine and multiple linear regression 11.2.1 Extreme learning machine model and its extensions 11.2.2 Multiple linear regression 11.3 A case study of forecasting streamflows using extreme machine learning models 11.3.1 Study area 11.4 Applications and results 11.5 Conclusions References Chapter-12---Hybrid-artificial-intelligence-model_2021_Advances-in-Streamflo 12. Hybrid artificial intelligence models for predicting daily runoff 12.1 Introduction 12.2 Theoretical background of MLP and SVR models 12.2.1 Support vector regression model 12.2.2 Multilayer perceptron neural network model 12.2.3 Grey wolf optimizer algorithm 12.2.4 Whale optimization algorithm 12.2.5 Hybrid MLP neural network model 12.2.6 Hybrid SVR model 12.3 Application of hybrid MLP and SVR models in runoff prediction: a case study 12.3.1 Study area and data acquisition 12.3.2 Gamma test for evaluating the sensitivity of input variables 12.3.3 Multiple linear regression 12.3.4 Performance evaluation indicators 12.4 Results and discussion 12.4.1 Identification of appropriate input variables using gamma test 12.4.2 Predicting daily runoff using hybrid AI models 12.5 Conclusions References Chapter-13---Flood-forecasting-and-error-simulati_2021_Advances-in-Streamflo 13. Flood forecasting and error simulation using copula entropy method 13.1 Introduction 13.2 Background 13.2.1 Artificial neural networks 13.2.2 Entropy theory 13.2.3 Copula function 13.3 Determination of ANN model inputs based on copula entropy 13.3.1 Methodology 13.3.1.1 Copula entropy theory 13.3.1.2 Partial mutual information 13.3.1.3 Input selection based on copula entropy method 13.3.2 Application of copula entropy theory in flood forecasting—a case study 13.3.2.1 Study area and data description 13.3.2.2 Flood forecasts at Three Gorges Reservoir 13.3.2.3 Flood forecasting at the outlet of Jinsha River 13.3.2.4 Performance evaluation 13.3.2.5 Results of selected model inputs 13.4 Flood forecast uncertainties 13.4.1 Distributions for fitting flood forecasting errors 13.4.2 Determination of the distributions of flood forecasting uncertainties at TGR 13.5 Flood forecast uncertainty simulation 13.5.1 Flood forecasting uncertainties simulation based on copulas 13.5.2 Flood forecasting uncertainties simulation 13.6 Conclusions References Appendix-1---Books-and-book-chapters-on-data-d_2021_Advances-in-Streamflow-F 1 - Books and book chapters on data-driven approaches Appendix-2---List-of-peer-reviewed-journals-on-_2021_Advances-in-Streamflow- 2 - List of peer-reviewed journals on data-driven approaches Appendix-3-Data-and-software_2021_Advances-in-Streamflow-Forecasting 3 - Data and software Web resources for open data sources of streamflow Software packages for streamflow modeling and forecasting Index_2021_Advances-in-Streamflow-Forecasting Index A B C D E F G H K L M N O P R S T U V W Z