دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed.] نویسندگان: Alfredo Vellido, Karina Gibert, Cecilio Angulo, José David Martín Guerrero سری: Advances in Intelligent Systems and Computing 976 ISBN (شابک) : 9783030196417 ناشر: Springer International Publishing سال نشر: 2020 تعداد صفحات: XII, 342 [347] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 45 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization: Proceedings of the 13th International Workshop, WSOM+ 2019, Barcelona, Spain, June 26-28, 2019 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفتها در نقشههای خودسازماندهی، کمیسازی بردار یادگیری، خوشهبندی و تجسم دادهها: مجموعه مقالات سیزدهمین کارگاه بینالمللی، WSOM+ 2019، بارسلونا، اسپانیا، 26-28 ژوئن 2019 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقالات ارائه شده در سیزدهمین کارگاه بین المللی نقشه های خودسازماندهی، کوانتیزه سازی بردار یادگیری، خوشه بندی و تجسم داده ها (WSOM+) را که در بارسلون اسپانیا برگزار شد، گردآوری می کند. از 26 تا 28 ژوئن 2019. از زمان تأسیس در سال 1997، این کنفرانس وضعیت هنر را در روشهای یادگیری ماشینی بدون نظارت مرتبط با روش موفق و پرکاربرد نقشه خود سازماندهی (SOM) به نمایش گذاشته و دامنه آن را به خوشه بندی و تجسم داده ها در این قسمت از سری AISC، خواننده تحقیقات نظری در مورد SOM، LVQ و روشهای مرتبط، و همچنین کاربردهای متعددی برای مشکلات در زمینههای مختلف از تجارت و مهندسی تا علوم زیستی پیدا خواهد کرد. با توجه به دامنه پوشش آن، این کتاب برای محققان و متخصصان یادگیری ماشین به طور کلی و به طور خاص، برای کسانی که به دنبال آخرین پیشرفتها در یادگیری بدون نظارت و تجسم دادهها هستند، جالب خواهد بود.
This book gathers papers presented at the 13th International Workshop on Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization (WSOM+), which was held in Barcelona, Spain, from the 26th to the 28th of June 2019. Since being founded in 1997, the conference has showcased the state of the art in unsupervised machine learning methods related to the successful and widely used self-organizing map (SOM) method, and extending its scope to clustering and data visualization. In this installment of the AISC series, the reader will find theoretical research on SOM, LVQ and related methods, as well as numerous applications to problems in fields ranging from business and engineering to the life sciences. Given the scope of its coverage, the book will be of interest to machine learning researchers and practitioners in general and, more specifically, to those looking for the latest developments in unsupervised learning and data visualization.
Front Matter ....Pages i-xii
Front Matter ....Pages 1-1
Look and Feel What and How Recurrent Self-Organizing Maps Learn (Jérémy Fix, Hervé Frezza-Buet)....Pages 3-12
Self-Organizing Mappings on the Flag Manifold (Xiaofeng Ma, Michael Kirby, Chris Peterson)....Pages 13-22
Self-Organizing Maps with Convolutional Layers (Lars Elend, Oliver Kramer)....Pages 23-32
Cellular Self-Organising Maps - CSOM (Bernard Girau, Andres Upegui)....Pages 33-43
A Probabilistic Method for Pruning CADJ Graphs with Applications to SOM Clustering (Josh Taylor, Erzsébet Merényi)....Pages 44-54
Front Matter ....Pages 55-55
SOM-Based Anomaly Detection and Localization for Space Subsystems (Maia Rosengarten, Sowmya Ramachandran)....Pages 57-69
Self-Organizing Maps in Earth Observation Data Cubes Analysis (Lorena Santos, Karine Reis Ferreira, Michelle Picoli, Gilberto Camara)....Pages 70-79
Competencies in Higher Education: A Feature Analysis with Self-Organizing Maps (Alberto Nogales, Álvaro José García-Tejedor, Noemy Martín Sanz, Teresa de Dios Alija)....Pages 80-89
Using SOM-Based Visualization to Analyze the Financial Performance of Consumer Discretionary Firms (Zefeng Bai, Nitin Jain, Ying Wang, Dominique Haughton)....Pages 90-99
Novelty Detection with Self-Organizing Maps for Autonomous Extraction of Salient Tracking Features (Yann Bernard, Nicolas Hueber, Bernard Girau)....Pages 100-109
Robust Adaptive SOMs Challenges in a Varied Datasets Analytics (Alaa Ali Hameed, Naim Ajlouni, Bekir Karlik)....Pages 110-119
Detection of Abnormal Flights Using Fickle Instances in SOM Maps (Marie Cottrell, Cynthia Faure, Jérôme Lacaille, Madalina Olteanu)....Pages 120-129
LVQ-type Classifiers for Condition Monitoring of Induction Motors: A Performance Comparison (Diego P. Sousa, Guilherme A. Barreto, Charles C. Cavalcante, Cláudio M. S. Medeiros)....Pages 130-139
When Clustering the Multiscalar Fingerprint of the City Reveals Its Segregation Patterns (Madalina Olteanu, Jean-Charles Lamirel)....Pages 140-149
Using Hierarchical Clustering to Understand Behavior of 3D Printer Sensors (Ashutosh Karna, Karina Gibert)....Pages 150-159
A Walk Through Spectral Bands: Using Virtual Reality to Better Visualize Hyperspectral Data (Henry Kvinge, Michael Kirby, Chris Peterson, Chad Eitel, Tod Clapp)....Pages 160-165
Incremental Traversability Assessment Learning Using Growing Neural Gas Algorithm (Jan Faigl, Miloš Prágr)....Pages 166-176
Front Matter ....Pages 177-177
Investigation of Activation Functions for Generalized Learning Vector Quantization (Thomas Villmann, Jensun Ravichandran, Andrea Villmann, David Nebel, Marika Kaden)....Pages 179-188
Robustness of Generalized Learning Vector Quantization Models Against Adversarial Attacks (Sascha Saralajew, Lars Holdijk, Maike Rees, Thomas Villmann)....Pages 189-199
Passive Concept Drift Handling via Momentum Based Robust Soft Learning Vector Quantization (Moritz Heusinger, Christoph Raab, Frank-Michael Schleif)....Pages 200-209
Prototype-Based Classifiers in the Presence of Concept Drift: A Modelling Framework (Michael Biehl, Fthi Abadi, Christina Göpfert, Barbara Hammer)....Pages 210-221
Front Matter ....Pages 223-223
Soft Subspace Topological Clustering over Evolving Data Stream (Mohammed Oualid Attaoui, Mustapha Lebbah, Nabil Keskes, Hanene Azzag, Mohammed Ghesmoune)....Pages 225-230
Solving a Tool-Based Interaction Task Using Deep Reinforcement Learning with Visual Attention (Sascha Fleer, Helge Ritter)....Pages 231-240
Approximate Linear Dependence as a Design Method for Kernel Prototype-Based Classifiers (David N. Coelho, Guilherme A. Barreto)....Pages 241-250
Subspace Quantization on the Grassmannian (Shannon Stiverson, Michael Kirby, Chris Peterson)....Pages 251-260
Variants of Fuzzy Neural Gas (Tina Geweniger, Thomas Villmann)....Pages 261-270
Autoencoders Covering Space as a Life-Long Classifier (Rudolf Szadkowski, Jan Drchal, Jan Faigl)....Pages 271-281
Front Matter ....Pages 283-283
Progressive Clustering and Characterization of Increasingly Higher Dimensional Datasets with Living Self-organizing Maps (Camden Jansen, Ali Mortazavi)....Pages 285-293
A Voting Ensemble Method to Assist the Diagnosis of Prostate Cancer Using Multiparametric MRI (Patrick Riley, Ivan Olier, Marc Rea, Paulo Lisboa, Sandra Ortega-Martorell)....Pages 294-303
Classifying and Grouping Mammography Images into Communities Using Fisher Information Networks to Assist the Diagnosis of Breast Cancer (Meenal Srivastava, Ivan Olier, Patrick Riley, Paulo Lisboa, Sandra Ortega-Martorell)....Pages 304-313
Network Community Cluster-Based Analysis for the Identification of Potential Leukemia Drug Targets (Adrián Bazaga, Alfredo Vellido)....Pages 314-323
Searching for the Origins of Life – Detecting RNA Life Signatures Using Learning Vector Quantization (Thomas Villmann, Marika Kaden, Szymon Wasik, Mateusz Kudla, Kaja Gutowska, Andrea Villmann et al.)....Pages 324-333
Simultaneous Display of Front and Back Sides of Spherical SOM for Health Data Analysis (Niina Gen, Tokutaka Heizo, Ohkita Masaaki, Kasezawa Nobuhiko)....Pages 334-339
Back Matter ....Pages 341-342