دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Harish Garg
سری: Industrial and Applied Mathematics
ISBN (شابک) : 9811999082, 9789811999086
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 414
[415]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Advances in Reliability, Failure and Risk Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در قابلیت اطمینان، شکست و تجزیه و تحلیل ریسک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب فصل های منتخبی را در مورد مشکلات صنعتی مدرن مرتبط با عدم قطعیت ها و ابهامات در حوزه تخصصی دانش جمع آوری می کند. این کتاب همچنین دانش مربوط به کاربرد ابزارهای مختلف ریاضی و آماری را در این زمینه ها ارائه می دهد. نتایج ارائه شده در کتاب به محققان و دانشمندان در انجام پروژه های پیچیده در حوزه خود کمک می کند. این کتاب که برای صنعتگران، دانشگاهیان، محققان و دانشجویان به طور یکسان مفید است، با هدف کمک به مدیران و متخصصان فنی در طراحی و اجرای برنامههای قابلیت اطمینان و ریسک به شرح زیر است: اطمینان از ایمنی سیستم و مدیریت دارایی آگاهانه از ریسک، دنبال کردن یک استراتژی مناسب برای حفظ اجزای مکانیکی. سیستم برنامه ریزی اقدامات مناسب در طول چرخه عمر محصول درک ساختار و هزینه یک سیستم پیچیده برنامه ریزی زمانبندی مناسب برای بهبود قابلیت اطمینان و عمر سیستم شناسایی خرابی های ناخواسته و تنظیم اقدامات پیشگیرانه و اصلاحی
This book collects select chapters on modern industrial problems related to uncertainties and vagueness in the expert domain of knowledge. The book further provides the knowledge related to application of various mathematical and statistical tools in these areas. The results presented in the book help the researchers and scientists in handling complicated projects in their domains. Useful to industrialists, academicians, researchers and students alike, the book aims to help managers and technical specialists in designing and implementation of reliability and risk programs as below: Ensure the system safety and risk informed asset management Follow a proper strategy to maintain the mechanical components of the system Schedule the proper actions throughout the product life cycle Understand the structure and cost of a complex system Plan the proper schedule to improve the reliability and life of the system Identify unwanted failures and set up preventive and correction action
Preface Contents Editor and Contributors 1 Degradation and Failure Mechanisms of Complex Systems: Principles 1.1 Introduction 1.2 Mechanical Degradation and Failure Mechanisms 1.2.1 Wear-Out Mechanisms 1.2.2 Overstress Mechanisms 1.3 Thermal Degradation and Failure Mechanisms 1.3.1 Wear-Out Mechanisms 1.3.2 Overstress Mechanisms 1.4 Chemical Degradation and Failure Mechanisms 1.4.1 Wear-Out Mechanisms 1.4.2 Overstress Mechanisms 1.5 Electronics Degradation and Failure Mechanisms 1.5.1 Dielectric Breakdown 1.5.2 Bias Temperature Instability (BTI) 1.5.3 Hot Carrier Injection (HCI) 1.5.4 Electromagnetic Interference (EMI) 1.5.5 Electrostatic Discharge (ESD) 1.5.6 Electrical Overstress (EOS) 1.5.7 Electromigration (EM) 1.5.8 Tin Whiskers 1.5.9 Self-healing Accumulation 1.5.10 Self-heating 1.5.11 Electrochemical Corrosion 1.5.12 Thermal Overstress Induced Electrolyte Evaporation 1.6 Radiation Degradation and Failure Mechanisms 1.6.1 Lattice Displacement 1.6.2 Ionization Effects 1.7 Human Failure Modes 1.7.1 Human Error 1.7.2 Violation 1.8 Software Errors and Failure Mechanisms 1.9 Cyber–Physical–Human (CPH) Systems’ Interaction Failure Mechanisms 1.10 Discussion and Conclusion References 2 Simplified Approach to Analyse the Fuzzy Reliability of a Repairable System 2.1 Introduction 2.2 Preliminary Concepts 2.2.1 Fuzzy Set ch2zadeh1965 2.2.2 TFN ch2chen1994 2.2.3 Simplified Fuzzy Arithmetic Operations for TFNs ch2chen1994 2.3 The LT, FLT, and Proposed SFLT Techniques 2.3.1 LT Method ch2kbmishra 2.3.2 FLT Technique ch2knezevic 2.3.3 The Proposed SFLT Technique 2.4 An Illustration 2.4.1 A Brief Overview of the System 2.4.2 System Fuzzy Reliability Assessment Using SFLT Technique 2.4.3 Comparative Analysis 2.4.4 System Fuzzy Reliability Estimation for Long-Term Period 2.4.5 Sensitivity Analysis 2.4.6 Ranking of System Critical Components 2.5 Conclusion References 3 Bayesian Reliability Analysis of Topp-Leone Model Under Different Loss Functions 3.1 Topp-Leone Distribution Model 3.2 Bayesian Estimation of Parameters of T-L Distribution with Complete Sample 3.2.1 Bayesian Estimation Under Quasi-prior Distribution 3.2.2 Comparative Study of Risk Functions for These Bayesian Estimators 3.3 Bayesian Reliability Analysis of T-L Distribution Based on Record Values 3.3.1 Record Values and Compound LINEX Loss Function 3.3.2 ML and Minimum Variance Unbiased Estimation 3.3.3 Bayesian Estimation Under CLL Function 3.4 Conclusions References 4 Reliability Metrics of Textile Confection Plant Using Copula Linguistic 4.1 Introduction 4.2 Abbreviations, Description, and State of the Confection Plant 4.2.1 Abbreviations 4.2.2 The Description of the Confection Plant 4.2.3 Description of the State 4.3 Formulation of Textile Confection Plant Mathematical Model 4.3.1 Mathematical Model of Textile Confection Plant Solution 4.4 Investigation of Textile Confection Plant Model for Numerous Occurrences 4.4.1 Analysis of Availability 4.4.2 Analysis of Reliability 4.4.3 Analysis of MTTF 4.4.4 Analysis of Sensitivity 4.4.5 Analysis of Cost 4.5 Discussion and Concluding Remark References 5 An Application of Soft Computing in Oil Condition Monitoring 5.1 Introduction 5.2 Importance of Oil Condition Monitoring in Agro-industries 5.3 Implementation of Oil Condition Monitoring 5.3.1 Fuzzy Systems 5.4 Analysis of Oil Condition Monitoring 5.5 Conclusion References 6 A Multi-parameter Occupational Safety Risk Assessment Model for Chemicals in the University Laboratories by an MCDM Sorting Method 6.1 Introduction 6.2 Literature Review 6.2.1 Past Studies Carried Out for University Laboratory Safety 6.2.2 Past Studies Carried Out on Occupational Safety Risk Assessment via MCDM Sorting 6.3 The Proposed Methodology 6.3.1 Establishing the Multi-parameter Occupational Safety Risk Assessment 6.3.2 Determining the Weight of Risk Parameters via BWM 6.3.3 Calculating the Risk Priority Classes of Chemicals in the Lab via TOPSIS-Sort 6.3.4 Suggesting Control Measures 6.4 Case Study 6.4.1 System Environment of the University Chemical Laboratory and Chemical List 6.4.2 The Exploitation of BWM in the Determination of Risk Parameter Weights 6.4.3 The Exploitation of TOPSIS-Sort in Risk Classification of Chemicals 6.4.4 Risk Management of the Laboratory 6.5 Conclusion References 7 Smart Failure Mode and Effects Analysis (FMEA) for Safety–Critical Systems in the Context of Industry 4.0 7.1 Introduction 7.1.1 Types of FMEA 7.2 FMEA Methodology 7.2.1 Classical-FMEA 7.2.2 Hybrid-FMEA Model 7.3 FMEA for Safety–Critical Systems 7.3.1 Basic Concept and Definition 7.3.2 Functional Safety Standards 7.3.3 Safety Barrier and Life Cycle 7.3.4 FMEA Implementation: Automotive Safety–Critical Systems 7.4 Smart-FMEA Applied for Asset Digital Transformation 7.5 Conclusion References 8 Optimization of Redundancy Allocation Problem Using Quantum Particle Swarm Optimization Algorithm Under Uncertain Environment 8.1 Introduction 8.2 Assumptions and Notation 8.2.1 Assumptions 8.2.2 Notation 8.3 Some Definitions 8.3.1 Fuzzy Number 8.3.2 Trapezoidal Fuzzy Number (TrFN) 8.3.3 Beta and Uniform Distribution Method of Crispification 8.4 Formulation of the Problem 8.5 Solution Methodology 8.6 Quantum Particle Swarm Optimization (QPSO) 8.7 Integration Handling Technique 8.8 Numerical Example 8.9 Result Analysis 8.10 Conclusions and Future Scopes References 9 Resilience: Business Sustainability Based on Risk Management 9.1 Introduction 9.2 Definition of Resilience, Robustness, and Antifragility 9.2.1 Different Levels of Resilience 9.3 Risk, Risk Management, and Business Resilience 9.4 Conclusion and Discussion References 10 Reliability Analysis of Process Systems Using Intuitionistic Fuzzy Set Theory 10.1 Introduction 10.2 Background 10.2.1 Uncertainty Sources in Chemical Process Industries 10.2.2 IFS Theory 10.3 Material and Method 10.3.1 Hazard Analysis 10.3.2 Developing a Fault Tree and Collecting Data 10.3.3 Use of the Expert System 10.3.4 Calculation of Probability of TE 10.3.5 Different Approach Comparison 10.3.6 Sensitivity Analysis 10.4 Application to the Case Study 10.4.1 Probabilistic Risk Assessment 10.4.2 Sensitivity Analysis 10.4.3 Identification of Critical BEs and Corrective Actions for the Most Critical BEs 10.5 Conclusion References 11 Smart Systems Risk Management in IoT-Based Supply Chain 11.1 Introduction 11.2 IoT-Based Supply Chain 11.3 Internet of Things and Risks 11.4 Risk and Cybersecurity Management Process 11.5 Smart Systems Risk Management in IoT-Based Supply Chain 11.6 Quantitative Assessment of IoT-Based Supply Chain Risks 11.6.1 Mikhailov Ranking Method 11.6.2 Research Findings 11.7 Conclusion References 12 Risk and Reliability Analysis in the Era of Digital Transformation 12.1 Introduction 12.2 Reliability Analysis 12.2.1 Big Data and Data Processing 12.2.2 Internet of Things 12.2.3 Cyber-Physical System 12.3 Assessment of Safety Risks 12.3.1 Big Data 12.3.2 Cyber-Physical System 12.4 Conclusion References 13 Qualitative Analysis Method for Evaluation of Risk and Failures in Wind Power Plants: A Case Study of Turkey 13.1 Introduction 13.2 Literature Review 13.2.1 Risk Management in the Renewable Energy 13.2.2 Risk Management in Wind Power Plants 13.2.3 Risk Management Methods in Related Literature 13.3 Methodology 13.4 Case Scenario: Evaluation of Wind Power Plants in Turkey 13.5 Conclusion and Future Research References 14 Some Discrete Parametric Markov–Chain System Models to Analyze Reliability 14.1 Introduction 14.2 Concepts Used in Analyzing System Models 14.3 Concept of Discrete Failure and Repair Time Models 14.4 Development of Some Important Results 14.5 Analysis of n-Unit Series System 14.6 Analysis of n-Unit Parallel System 14.7 Analysis of n-Unit Standby System 14.8 A Two Identical Unit Warm Standby System Model with Geometric Failure and Repair Time Distributions 14.8.1 Transition Probabilities 14.8.2 Mean Sojourn Time in the Various States 14.8.3 Analysis of Reliability and MTSF 14.8.4 Availability Analysis 14.8.5 Busy Period Analysis 14.8.6 Profit Function Analysis 14.8.7 Graphical Conclusions References 15 Distributed System Reliability Analysis with Two Coverage Factors: A Copula Approach 15.1 Introduction 15.2 Literature Review 15.3 Nomenclatures and Model Description 15.3.1 Nomenclatures 15.3.2 Model Description 15.3.3 Solution of the Model 15.4 Analytical Analysis of the Model for Particular Cases 15.4.1 Availability Analysis 15.4.2 Reliability Analysis 15.4.3 Cost Analysis 15.5 Results Discussion 15.6 Conclusion References 16 Repair and Maintenance Management System of Food Processing Equipment 16.1 Introduction 16.2 RAM Theory 16.2.1 Reliability 16.2.2 Availability 16.2.3 Maintainability 16.3 Application of RAM Analysis in the Food Processing Lines 16.3.1 Juice Bottling 16.3.2 Canned Products 16.3.3 Dairy Products 16.3.4 Milling Process 16.4 Conclusions References 17 Reliability, Availability, Maintainability, and Dependability of a Serial Rice Mill Plant (RMP) with the Incorporation of Coverage Factor 17.1 Introduction 17.2 Materials and Method 17.2.1 Reliability Function 17.2.2 Availability Function 17.2.3 Maintainability 17.2.4 Dependability 17.2.5 MTBF 17.2.6 MTTR 17.2.7 Exponential Distribution 17.2.8 Constant Failure Rate 17.2.9 Notations 17.3 System Description 17.3.1 Description 17.3.2 Objectives 17.3.3 Assumption 17.4 RAMD Analysis of the System 17.4.1 RAMD Indices for Subsystem A 17.4.2 RAMD Indices for Subsystem B 17.4.3 RAMD Indices for Subsystem C 17.5 Numerical Simulation 17.6 Result Discussion 17.7 Conclusion References