دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Partha Pratim Sahu
سری:
ISBN (شابک) : 0367265656, 9780367265656
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 467
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Advances in Optical Networks and Components به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در شبکه های نوری و قطعات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به عنوان یک کتاب درسی در مقطع کارشناسی ارشد/فوق لیسانس برای دوره های آموزشی در مورد شبکه های نوری پرسرعت و همچنین شبکه های کامپیوتری در نظر گرفته شده است. این ده فصل اصول اساسی فناوری و همچنین آخرین پیشرفتها را پوشش میدهد و در مورد امنیت شبکه، قابلیت بقا، و قابلیت اطمینان شبکههای نوری و طرحهای اولویت مورد استفاده در مسیریابی طول موج بحث میکند. این کتاب همچنین به بررسی استانداردهای Fiber To The Home (FTTH) و استقرار و مسائل تحقیقاتی آنها می پردازد و شامل مثال هایی در تمام فصل ها برای کمک به درک مشکلات و راه حل ها می شود.
< /p>
This book is intended as a graduate/post graduate level textbook for courses on high-speed optical networks as well as computer networks. The ten chapters cover basic principles of the technology as well as latest developments and further discuss network security, survivability, and reliability of optical networks and priority schemes used in wavelength routing. This book also goes on to examine Fiber To The Home (FTTH) standards and their deployment and research issues and includes examples in all the chapters to aid the understanding of problems and solutions.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Author Chapter 1 Optical Ring Metropolitan Area Networks 1.1 Different MANs 1.2 Metro WDM Networks 1.2.1 WDM Ring Networks for MAN 1.2.2 Metro-Edge Technology 1.2.3 Traffic Grooming in SONET Ring Networks 1.2.3.1 Node Architecture 1.2.3.2 Single-Hop Grooming in SONET/WDM Ring 1.2.3.3 Multi-Hop Grooming in SONET/WDM Ring 1.2.4 Dynamic Grooming in SONET/WDM Ring 1.2.5 Grooming in Interconnected SONET/WDM Rings 1.3 Traffic Grooming in WDM Ring Networks 1.3.1 Problem Definition 1.3.2 Mathematical Formulation of Single-Hop Connections 1.3.3 Mathematical Formulation of Multi-hop Method 1.3.4 Heuristics-Based Simulated Annealing Algorithm for Single Hop 1.4 Interconnected WDM Ring Networks 1.4.1 Interconnected Rings 1.4.2 Traffic Grooming in Interconnected Rings 1.5 Packet Communication using Tunable Wavelength ADMs 1.5.1 Protocol 1.5.2 Algorithm of Virtual Path Creation and Assigning Wavelengths 1.5.3 Priority Schemes 1.5.4 Packet-Selection Protocols 1.5.5 Implementation of Algorithm 1.6 Online Connection Provisioning using ROADMs 1.6.1 Tuning Constraint 1.6.2 Problem Statement 1.6.3 Heuristics 1.6.4 Comparison of Heuristics Schemes using Numerical Examples Summary Exercises References Chapter 2 Queuing System and Its Interconnection with Other Networks 2.1 Queuing Models 2.1.1 FCFS System 2.1.2 Representation of Queue Models 2.1.3 Random Variables and Parameters 2.2 Queues 2.2.1 M/M/1 Queues 2.2.2 M/M/1/K Queues 2.2.3 M/M/m Queues 2.2.4 M/M/∞ Queue System 2.2.5 M/M/m/m Queue System 2.2.6 M/G/1 Queues 2.2.7 M/G/1 Queues with Vacations 2.3 Networks of Queues 2.4 Time Reversibility – Burke’s Theorem 2.5 Interconnection with Other Networks 2.5.1 Gateways 2.5.2 Bridges 2.5.2.1 Spanning Bridges 2.5.2.2 Source Routing Bridges 2.5.2.3 Quality of Bridge Services 2.5.3 Routers 2.5.4 Repeaters Summary Exercises References Chapter 3 Routing and Wavelength Assignment 3.1 Light paths 3.2 LP Formulation of RWA and Its Reduction 3.2.1 Reduction of Size of LP Formulation 3.2.2 Randomized Rounding 3.2.3 Graph Coloring 3.2.4 Analysis of ILP 3.3 Routing 3.3.1 Routing Algorithms 3.3.1.1 Dijkstra’s Algorithm 3.3.1.2 Bellman–Ford Algorithm 3.3.2 Routing Approaches 3.3.2.1 Fixed Routing 3.3.2.2 Fixed-Alternate Routing 3.3.2.3 Flooding 3.3.2.4 Adaptive Routing 3.3.2.5 Fault-Tolerant Routing 3.3.2.6 Randomized Routing 3.4 WA Subproblem (Heuristics) 3.4.1 Wavelength Search Algorithm 3.4.1.1 Exhaustive Search 3.4.1.2 Tabu Search 3.4.1.3 Simulated Annealing 3.4.1.4 Genetic Algorithms 3.4.2 WA Heuristics 3.4.2.1 Random WA (R) 3.4.2.2 First-Fit (FF) Approach 3.4.2.3 Least-Used (LU) Approach 3.4.2.4 Most-Used (MU) Approach 3.4.2.5 Min-Product (MP) Approach 3.4.2.6 Least-Loaded (LL) Approach 3.4.2.7 MAX-SUM (MS) Approach 3.4.2.8 Relative Capacity Loss (RCL) Approach 3.4.2.9 Distributed Relative Capacity Loss (DRCL) Approach 3.5 Fairness Improvement 3.5.1 Wavelength Reservation 3.5.1.1 Forward Reservation 3.5.1.2 Backward Reservation 3.5.1.3 Congestion-Based Routing WRSV Method 3.5.1.4 k-Neighborhood Routing 3.5.2 WThr Protection 3.5.3 Limited Alternate Routing 3.5.4 Static Priority Method 3.5.5 Dynamic Priority Method 3.6 Mathematical Formulation of RWA 3.6.1 Traffic Flow Constraints 3.6.2 Wavelength Constraints 3.7 Priority-Based RWA 3.8 Comparative Study of Different RWA Algorithms on NSFNET T1 Backbone Summary Exercises References Chapter 4 Virtual Topology 4.1 Virtual Topology Architecture 4.1.1 General Problem Statement 4.2 NSFNET Optical Backbone: Virtual Topology 4.2.1 Formulation of Virtual Topology 4.2.2 Algorithm 4.2.2.1 Subproblems 4.2.2.2 Simulated Annealing 4.2.2.3 Flow-Deviation Algorithm 4.3 Advanced Virtual Topology Optimization 4.3.1 Problem Specification of LP 4.3.1.1 Linear Formulation 4.3.1.2 Variables 4.3.1.3 Objective: Optimality Criterion 4.3.1.4 Constraints 4.3.2 Heuristic Approaches 4.4 Network Design: Resource Budgeting and Cost Model 4.4.1 Budgeting 4.5 Reconfiguration of Virtual Topology 4.5.1 Reconfiguration Algorithm 4.5.2 NSFNET Virtual Topology Design 4.6 Virtual-Topology Adaptation with Dynamic Trafc fi 4.6.1 Problem Definition 4.6.2 Adaptation with Minimal Light path Change Summary Exercises References Chapter 5 Wavelength Conversion in WDM Networks 5.1 Basics of WC 5.1.1 Wavelength Converters 5.1.2 Switches 5.2 Optical Network Design, Control, and Management with Wavelength Conversion 5.2.1 Optical Network Design with Wavelength Converter 5.2.2 Control of Optical Networks with Wavelength Converters 5.2.3 Network Management 5.3 Benefit Analysis of Wavelength Conversion 5.3.1 A Probabilistic Approach to WC Benefits’ Analysis 5.3.2 A Review of Benefit-Analysis Studies 5.3.2.1 Bounds on RWA Algorithms with and without Wavelength Converters 5.3.2.2 Probabilistic Model Not Based on Link-Load Assumption 5.3.2.3 Probabilistic Model Based on Link- Load Assumption 5.3.2.4 Probabilistic Model for a Class of Networks 5.3.2.5 Multi-Fiber Networks 5.3.2.6 Sparse Wavelength Conversion 5.3.2.7 Limited-Range WC 5.3.3 Benefits of Sparse Conversion 5.4 RWA with All the Nodes Fully Wavelength Convertible 5.4.1 Fully Wavelength-Convertible Node Architecture 5.4.2 Mathematical Formulation and Constraints 5.4.3 Algorithm 5.4.4 Simulation 5.5 RWA of Sparse Wavelength Converter Placement Problem 5.5.1 Analytical Model for the Estimation of Blocking Probability 5.5.2 FAR-FF Algorithm 5.5.3 LLR-FF Algorithm 5.5.4 WMSL Algorithm 5.6 Simulation of Benefits of Using Wavelength Converters Summary Exercises References Chapter 6 Traffic Grooming in Optical Networks 6.1 Review of Traffic Grooming 6.2 Static Traffic Grooming 6.2.1 Problem Statement for Traffic Grooming 6.2.2 Mathematical (ILP) Formulation of the Static Traffic-Grooming Problem 6.2.3 Numerical Simulation Results from ILP Formulations 6.2.4 Heuristic Technique 6.2.5 Mathematical Formulation of Other Optimization Criteria 6.3 Dynamic Traffic Grooming 6.3.1 Provisioning Connections in Heterogeneous WDM Networks 6.3.2 Illustrative Numerical Examples 6.4 Adaptive Grooming (AG) 6.4.1 Performance in Terms of Different Parameters 6.5 Hierarchical Switching and Waveband Grooming 6.5.1 Hybrid Node Architecture 6.5.2 Issues and Problems 6.6 Virtual Concatenation 6.6.1 Virtual Concatenation Architecture 6.7 RWA of Traffic Grooming Connections 6.7.1 SOURCE_SWG Algorithm 6.7.2 DES_SWG Algorithm 6.7.3 Problem Formulation Summary Problems References Chapter 7 Survivability of Optical Networks 7.1 Parameters for Survival Schemes 7.2 Fault Management 7.2.1 Fault Management in Ring Topology 7.2.1.1 Unidirectional Path-Switched Ring (UPSR) 7.2.1.2. Bidirectional Line-Switched Ring (BLSR) 7.2.2 Fault Management in WDM Mesh Networks 7.3 Fault-Recovery Mechanism 7.3.1 Path and Link Protection 7.3.2 Dedicated Protection (1:1 and 1 + 1) and M:N Shared Protection 7.4 Protection Issues Related to Ring Cover, Stacked Rings 7.5 Survivable Routing and Wavelength Assignment (S-RWA) 7.5.1 Algorithms for Computing Link-Disjoint Paths 7.5.2 ILP of S-RWA for Static Traffic Demands 7.5.2.1 ILP1: Dedicated Path Protection 7.5.2.2 ILP2: Shared-Path Protection 7.5.3 Maximizing Share Ability for Shared-Protection Schemes 7.5.3.1 Backup Route Optimization 7.5.3.2 Physical Constraint on Backup Route Optimization 7.6 Dynamic Restoration 7.7 Other Network Survivability Issues 7.7.1 Service Availability 7.7.2 Availability Study 7.7.2.1 Network Component Availability 7.7.2.2 End-to-End Path Availability 7.7.2.3 Availability of Dedicated Path- Protected Connection 7.7.2.4 Availability in Backup Sharing 7.8 Dynamic Routing and Wavelength Assignment under Protection 7.8.1 Protection Schemes in Alternate Path Routing and Wavelength Assignment 7.8.1.1 Shared protection 7.8.1.2 Restricted Shared Protection 7.8.2 Routing and Wavelength Assignment Based on Wavelength Converter under Protection 7.8.3 Traffic Grooming-Based RWA under Protection Tree 7.8.3.1 Problem Formulation 7.8.3.2 SOURCE_SWG 7.8.3.3 DES_SWG Algorithm 7.8.3.4 Analytical Model for Blocking Probability Analysis under Protection Tree 7.9 Service Reliability and Restorability 7.9.1 Service Reliability Disruption Rate 7.9.2 Restoration Time 7.9.3 Service Restorability 7.9.4 Estimation of Reliability of Protection in NSFNET T1 Backbone 7.10 Multicast Trees for Protection of WDM Mesh Network 7.10.1 Light-Tree for Unicast Traffic 7.10.1.1 Layered-Graph Model 7.10.2 Steiner Trees 7.10.2.1 General Problem Statement of light-Trees for Unicast Traffic 7.10.2.2 Formulation of the Optimization Problem: Unicast Traffic 7.11 Light-Trees for Broadcast Traffic 7.11.1 General Problem Statement 7.11.2 Formulation of the Optimization Problem: Broadcast Traffic 7.12 Light-Trees for Multicast Traffic 7.12.1 General Problem Statement 7.12.2 Problem Formulation for a Network with Converters 7.12.3 Variation of Problem Formulation with No Converters 7.12.4 Variation of Problem Formulation with Fractional-Capacity Sessions 7.12.5 Variation of Problem Formulation with Splitters Constraints 7.12.6 Simulation in Sample Network for Multicast Transmission 7.13 Multicast Tree Protection 7.13.1 Protection Schemes 7.13.2 General Problem Statement 7.13.2.1 Problem Formulation for a Network without λ Continuity 7.13.2.2 Problem Formulation for a Network with λ Continuity 7.13.3 Network Having Protection Based on Light-Trees 7.13.4 Other Protection Schemes 7.14 Protection of Traffic Grooming-Based Optical Network 7.14.1 Protection-at-Light path (PAL) Level 7.14.2 Mixed Protection-at-Connection (MPAC) Level 7.14.3 Separate Protection-at-Connection (SPAC) Level Summary Exercises References Chapter 8 Restoration Schemes in the Survivability of Optical Networks 8.1 Restoration Networks 8.1.1 Ring Topology 8.1.2 Mesh Topology Restoration 8.2 Parameters Considered in Restoration 8.2.1 Disruption Rate 8.2.2 Restoration Time 8.2.3 Restoration Speed 8.2.4 Capacity Efficiency 8.2.5 Resource Success Time 8.2.6 Availability 8.2.7 End-to-End Path Availability 8.2.8 Reliability 8.3 Restoration Schemes for Mesh Topology 8.3.1 Path Restoration Routing Problem 8.3.2 Operation Flow 8.3.3 Restoration Problem 8.3.3.1 Maximum Restoration Problem 8.3.3.2 Restoration Route (Alternate Path) Search Procedure 8.3.3.3 Link Capacity Control Procedure 8.3.3.4 Concurrent Contention-Locking Procedure 8.3.3.5 Optimization Algorithm 8.4 Restoration Activation Architectures 8.4.1 Sequential Activation Architecture 8.4.2 Parallel Activation Architecture 8.4.2.1 Message Processing and Exchange Reduction 8.4.2.2 Cross-Connect Reduction 8.4.2.3 Dedicated Signaling Channels 8.4.3 Optimization Performance of Restoration Approaches 8.4.3.1 Centralized Algorithms 8.4.4 Scalability and Application to Service Layer Restoration 8.4.4.1 Call Admission Control for Restorable Connections Exercises References Chapter 9 Network Reliability and Security 9.1 Connectivity Using Redundancy 9.1.1 Min-Cut Max-Flow Theorem 9.1.2 The Cut-Saturation Algorithm 9.2 Probability of Connectivity 9.2.1 Node Pair Failure Probability 9.3 Reliability Model 9.3.1 Reliability Function 9.3.2 Reliability Measures 9.3.3 Availability Function 9.3.4 Series Network 9.3.5 Parallel Network 9.3.6 Reliability Improvement Techniques 9.3.7 Availability Performance 9.3.8 The Self-Heal Technique 9.3.9 Fail-Safe Fiber-Optic Nodes 9.4 Network Security 9.4.1 Network Security Problems 9.4.1.1 Threats 9.4.2 Data Encryption 9.4.2.1 Basic Concepts 9.4.2.2 Transposition Ciphers 9.4.2.3 Substitution Ciphers 9.5 Data Encryption Standards (DES) 9.5.1 Product Cipher 9.5.2 Block Ciphers 9.5.3 The DES Algorithm 9.5.4 Public Key Cryptography 9.5.5 Congruences: Modular Arithmetic 9.5.6 The Rivest–Shamir–Adleman (RSA) Algorithm 9.5.7 Comparison of Cryptographic Techniques 9.6 Optical Cryptography 9.6.1 Confindentiality 9.6.2 OCDMA-Based Encoder/Decoder 9.6.3 DSP-Based Approach 9.6.4 Spread Spectrum-Based Approach Summary Exercises References Chapter 10 FTTH Standards, Deployments, and Issues 10.1 PONs 10.1.1 Standards of Different PON Technology 10.1.2 EPON 10.1.3 APON 10.1.4 Generalized Framing Procedure PON (GPON) 10.1.5 WDM-PON 10.2 Hybrid PON 10.2.1 Success-HPON 10.2.2 Success DRA 10.3 Open Research Issues 10.3.1 Issues in EPON 10.3.2 Issues in Large-Scale IP Video Networks 10.3.3 Issues in Integrated ONU/Wireless Base Station/Home Gateway/DSLAM 10.3.4 Issues in Hybrid TDM/WDM-PON Architectures 10.3.5 Issues in WDM-PON Exercises References Chapter 11 Math Lab Codes for Optical Fiber Communication System 11.1 Specification of Design of Optical Fibers 11.1.1 Material specicafition 11.1.2 Transmission Specicafition 11.1.3 Environmental Specicafition 11.2 Math Lab Codes for Design of Optical Fibers 11.2.1 Codes for Program of the Design of Optical Fibers 11.2.2 Codes for Design of Standard Single-Mode Fibers 11.2.3 Codes of Nonzero Dispersion-Shifted Fibers 11.2.4 Codes of split-step Fourier method (SSFM) 11.2.5 Codes for Optical Fiber Transmission System 11.3 MATLAB Codes for Optical Transmission System with Mux and Demux 11.3.1 Modeling of Nonlinear Optical Fiber Transmission Systems 11.3.2 Phase Modulation Model and Intensity Modulation 11.3.3 Math Lab Codes for Raman Amplification and Split-Step Fourier Method 11.4 Modeling of Optically Amplified Transmission System and BER 11.4.1 Propagation of Optical Signals over a Single-Mode Optical Fiber–SSMF 11.4.2 BER Evaluation Summary Exercises References Index