دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020 نویسندگان: Paolo Boggiatto (editor), Marco Cappiello (editor), Elena Cordero (editor), Sandro Coriasco (editor), Gianluca Garello (editor), Alessandro Oliaro (editor), Jörg Seiler (editor) سری: Applied and Numerical Harmonic Analysis ISBN (شابک) : 3030361373, 9783030361372 ناشر: Birkhäuser سال نشر: 2020 تعداد صفحات: 532 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب پیشرفت در تجزیه و تحلیل میکرومکانی و فرکانس زمانی (تحلیل هارمونیک کاربردی و عددی): ریاضیات، حساب دیفرانسیل و انتگرال، معادلات دیفرانسیل
در صورت تبدیل فایل کتاب Advances in Microlocal and Time-Frequency Analysis (Applied and Numerical Harmonic Analysis) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در تجزیه و تحلیل میکرومکانی و فرکانس زمانی (تحلیل هارمونیک کاربردی و عددی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جلد حاضر مشارکتهای مربوط به کنفرانس تجزیه و تحلیل میکرومکانی و فرکانس زمانی 2018 (MLTFA18) را گردآوری میکند که از 2 تا 6 ژوئیه 2018 در دانشگاه تورینو برگزار شد. این رویداد در تجلیل از پروفسور لوئیجی رودینو به مناسبت هفتادمین سالگرد تولد او. تمرکز کنفرانس و محتویات مقالات نشان دهنده علایق تحقیقاتی مختلف لوئیجی در طول حرفه طولانی و بسیار پربار او در دانشگاه تورینو است.
The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.
ANHA Series Preface Preface Contents Anisotropic Gevrey-Hörmander Pseudo-Differential Operators on Modulation Spaces 1 Introduction 2 Preliminaries 2.1 Weight Functions 2.2 Gelfand-Shilov Spaces 2.3 Short Time Fourier Transforms and Gelfand-Shilov Spaces 2.4 A Broad Family of Modulation Spaces 2.5 Pseudo-Differential Operators 2.6 Symbol Classes 3 Continuity on Modulation Spaces for Pseudo-Differential Operators with Symbols of Infinite Order References Hardy Spaces on Weighted Homogeneous Trees 1 Introduction 2 Weighted Homogeneous Trees 2.1 Doubling and Local Doubling Properties 2.2 Admissible Trapezoids and Calderón–Zygmund Sets 3 The Maximal Function 4 Hardy Spaces 4.1 Equivalence of Spaces H1,p(μ) for p(1,∞] 4.2 Real Interpolation Properties of H1(μ) 4.3 Boundedness of Singular Integrals on H1(μ) References The Global Cauchy Problem for the Plate Equation in Weighted Sobolev Spaces 1 Introduction and Main Result 2 Preliminaries 3 Well-Posedness for a Scalar Schrödinger-Type Equation 4 Well-Posedness for First Order Systems 5 Proof of Theorem 1 References Cone-Adapted Shearlets and Radon Transforms 1 Introduction 2 Preliminaries 2.1 Notation 2.2 The Wavelet Transform 2.3 The Shearlet Transform 2.4 The Radon Transform 2.5 The Radon Transform Intertwines Wavelets and Shearlets 3 Cone-Adapted Shearlets and Radon Transforms 4 Generalizations References Linear Perturbations of the Wigner Transform and the Weyl Quantization 1 Introduction 2 Preliminaries 2.1 Function Spaces 2.2 Basic Properties of M1 2.3 Bilinear Coordinate Transformations 2.4 Partial Fourier Transforms 3 Matrix-Wigner Distributions 3.1 Connection to the Short-Time Fourier Transform 3.2 Main Properties of the Transformation BA 3.3 Cohen Class Members as Perturbations of the Wigner Transform 3.3.1 Main Properties of the Cohen Class 4 Pseudodifferential Operators 4.1 Boundedness Results 4.1.1 Operators on Lebesgue Spaces 4.1.2 Operators on Modulation Spaces 4.2 Symbols in the Sjöstrand Class References About the Nuclearity of S(Mp) and Sω 1 Introduction and Preliminaries 2 Results for the Space S(Mp) 3 Results for the Space Sω and Examples References Spaces of Ultradifferentiable Functions of Multi-anisotropic Type 1 Introduction 2 The Space EM( Ω) 3 The Space Es,Γ(Ω) 4 The Space of Multi-Anisotropic Gevrey Vectors 5 The Characterization of the Space Es,Γ(Ω) 6 The Space EM,Γ( Ω) References Comparison Principle for Non-cooperative Elliptic Systems and Applications 1 Introduction 2 Comparison Principle for Non-Cooperative Elliptic Systems 3 Existence of Classical Solution for Linear Non-Cooperative Elliptic System References On the Simple Layer Potential Ansatz for the n-Dimensional Helmholtz Equation 1 Introduction 2 Definitions 3 Reduction of a Certain Integral Equation 4 Representation Theorem References Decay Estimates and Gevrey Smoothing for a Strongly Damped Plate Equation 1 Introduction 2 Proof of Theorem 1 References Long Time Decay Estimates in Real Hardy Spaces for the Double Dispersion Equation 1 Introduction 2 Notation 3 Fundamental Solution and Decay Estimates Appendix References On Density Operators with Gaussian Weyl Symbols 1 Introduction 2 Density Operators 2.1 Basic Definitions 2.2 Reduced Density Operators 2.3 Gaussian Symbols 2.4 A Lemma on Gaussians 2.5 Partial Traces of Gaussian Density Operators 3 Separability of Gaussian Density Operators 3.1 The Notion of Separability 3.2 The Gaussian Case: Necessary and Sufficient Conditions References On the Solvability of a Class of Second Order Degenerate Operators 1 Introduction 2 The Mixed-Type Case 2.1 Example 2.2 Example 2.3 Example 2.4 Example: A Mildly Complex Case 3 The Schrödinger-Type Case 3.1 Example 3.2 Example 3.3 Example 4 The Mixed-Schrödinger-Type Case 4.1 Example 4.2 Example 4.3 Example 5 Concluding Remarks References Small Data Solutions for Semilinear Waves with Time-Dependent Damping and Mass Terms 1 Introduction 2 The Linear Estimates 2.1 Examples 3 Proof of Theorem 1 References Integrating Gauge Fields in the ζ-Formulation of Feynman\'s Path Integral 1 Introduction 2 The Free Real Scalar Quantum Field 2.1 The ζ-Regularized Vacuum Expectation Values of Hn and Hζ 2.2 The N→∞ Particle Limit 3 Free Complex Scalar Quantum Fields 4 The Dirac Field 5 Coupling a Fermion of Mass m to Light in 1+1 Dimensions 6 Conclusion References A Class of Well-Posed Parabolic Final Value Problems 1 Introduction 1.1 Background: Phenomena of Instability 1.2 Main Tool: Injectivity 1.3 The Abstract Final Value Problem 2 Proof of Theorem 1 3 The Heat Problem with Final Time Data 3.1 The Boundary Homogeneous Case 3.2 The Inhomogeneous Case References Localization of a Class of Muckenhoupt Weights by Using Mellin Pseudo-Differential Operators 1 Introduction 2 The C*-Algebras SO and QC 2.1 The C*-Algebra SO of Slowly Oscillating Functions 2.2 The C*-Algebra QC of Quasicontinuous Functions 3 The Banach Algebras Zp,w and Zp,wπ 4 Muckenhoupt Weights 4.1 Submultiplicative Functions and Their Indices 4.2 Functions in VMO0(Gamma) and SO0(Gamma) 4.3 A Subclass of Muckenhoupt Weights 4.4 Weights Locally Equivalent to Slowly Oscillating Muckenhoupt Weights 5 Mellin Pseudo-Differential Operators and Their Applications 5.1 Boundedness and Compactness of Mellin Pseudo-Differential Operators 5.2 Symbols of Mellin Pseudo-Differential Operators 5.3 Applications of Mellin Pseudo-Differential Operators 6 Localization of Muckenhoupt Weights Satisfying Condition (A) References Carleman Regularization and Hyperfunctions 1 Introduction 2 Notations and Review of Hyperfunctions 3 Carleman Regularization: Preparations 4 The Regularization 5 The Representation Theorems 6 Representation of Real Analytic Functions References Strictly Hyperbolic Cauchy Problems with Coefficients Low-Regular in Time and Space 1 Introduction 2 Statement of Results 3 Examples and Remarks 4 Definitions and Tools 4.1 Pseudodifferential Operators with Limited Smoothness 4.1.1 Mapping Properties 4.1.2 Composition, Adjoint and Sharp Gårding\'s Inequality 5 Proof 5.1 Regularization 5.2 Symbol Space 5.3 Transformation to a First-Order System 5.4 Diagonalization 5.4.1 First Step of Diagonalization 5.4.2 Second Step of Diagonalization 5.5 Conjugation 5.6 Conclusion 6 Concluding Remarks References Quantization and Coorbit Spaces for Nilpotent Groups 1 Introduction 2 Framework 3 Weyl Systems, the Fourier-Wigner Transform 4 Pseudo-Differential Operators 5 Phase-Space Shifts 6 Coorbit Spaces—A Short Overview References On the Measurability of Stochastic Fourier Integral Operators 1 Introduction 2 Classical Theory of Oscillatory Integrals and FIOs 2.1 Oscillatory Integrals 2.2 Classical Theory of FIOs 3 Stochastic Fourier Integral Operators 4 Applications References Convolution and Anti-Wick Quantisation on Ultradistribution Spaces 1 Introduction 2 Preliminaries 3 Existence of S*-Convolution and D*-Convolution 4 Convolution with the Gaussian Kernel 4.1 The Fourier-Laplace Transform on Ultradistributions 4.2 Convolution with the Gaussian Kernel 5 Anti-Wick Quantisation 6 An Extension of Convolution References Exact Formulas to the Solutions of Several Generalizations of the Nonlinear Schrödinger Equation 1 Introduction 2 Proof of Theorem 1 3 Proof of Theorem 2 References Dirichlet-to-Neumann Operator and Zaremba Problem 1 Introduction 2 Reduction of Neumann Conditions to the Boundary 3 Reduction of Mixed Problems to the Boundary 4 The Relationship to the Edge Calculus References Extended Gevrey Regularity via the Short-Time Fourier Transform 1 Introduction 1.1 Basic Notation 2 Preliminaries 2.1 Extended Gevrey Regularity 2.2 The Associated Function to the Sequence Mτ,σp=pτp σ 2.3 Modulation Spaces 3 Decay Properties of the STFT 4 Wave Front Sets WFτ,σ and STFT References Wiener Estimates on Modulation Spaces 1 Introduction 2 Preliminaries 2.1 Gelfand-Shilov Spaces and Gevrey Classes 2.2 Ordered, Dual and Phase Split Bases 2.3 Invariant Quasi-Banach Spaces and Spaces of Mixed Quasi-Normed Spaces of Lebesgue Types 2.4 Modulation and Wiener Spaces 2.5 Classes of Periodic Elements 3 Estimates on Wiener Spaces and Periodic Elements in Modulation Spaces 3.1 Estimates of Wiener Spaces 3.2 Wiener Estimates on Short-Time Fourier Transforms, and Modulation Spaces 3.3 Periodic Elements in Modulation Spaces References The Gabor Wave Front Set of Compactly Supported Distributions 1 Introduction 2 Preliminaries 3 The Gabor and the Classical Wave Front Sets 4 Propagation of Singularities for Schrödinger Equations References Applied and Numerical Harmonic Analysis (99 volumes)