دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Jaap Kamps, Lorraine Goeuriot, Fabio Crestani, Maria Maistro, Hideo Joho, Brian Davis, Cathal Gurrin, Udo Kruschwitz, Annalina Caputo سری: Lecture Notes in Computer Science, 13980 ISBN (شابک) : 3031282434, 9783031282430 ناشر: Springer سال نشر: 2023 تعداد صفحات: 780 [781] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 36 Mb
در صورت تبدیل فایل کتاب Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023, Proceedings, Part I به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در بازیابی اطلاعات: چهل و پنجمین کنفرانس اروپایی در مورد بازیابی اطلاعات، ECIR 2023، دوبلین، ایرلند، 2 تا 6 آوریل 2023، مجموعه مقالات، قسمت اول نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مجموعه سه جلدی LNCS 13980، 13981 و 13982، مجموعه مقالات داوری چهل و پنجمین کنفرانس اروپایی تحقیقات IR، ECIR 2023، در دوبلین، ایرلند، طی 2 تا 6 آوریل 2023 برگزار شد. 65 مقاله کامل، 41 مقاله 19 مقاله نمایشی، 12 مقاله تکرارپذیری، 10 مقاله کنسرسیوم دکترا به دقت بررسی و از بین 489 مقاله ارسالی انتخاب شدند. مقالات پذیرفته شده، وضعیت هنر در بازیابی اطلاعات را با تمرکز بر جنبه های کاربر، جنبه های سیستمی و بنیادی، یادگیری ماشین، برنامه های کاربردی، ارزیابی، چالش های جدید اجتماعی و فنی و سایر موضوعات مرتبط مستقیم یا غیرمستقیم با جستجو پوشش می دهند.
The three-volume set LNCS 13980, 13981 and 13982 constitutes the refereed proceedings of the 45th European Conference on IR Research, ECIR 2023, held in Dublin, Ireland, during April 2-6, 2023. The 65 full papers, 41 short papers, 19 demonstration papers, and 12 reproducibility papers, 10 doctoral consortium papers were carefully reviewed and selected from 489 submissions. The accepted papers cover the state of the art in information retrieval focusing on user aspects, system and foundational aspects, machine learning, applications, evaluation, new social and technical challenges, and other topics of direct or indirect relevance to search.
Preface Organization Keynotes Personalization at Spotify On A Few Responsibilities of (IR) Researchers: Fairness, Awareness, and Sustainability 2022 Karen Spärck Jones Award Lecture Large Language Models for Question Answering: Challenges and Opportunities Contents – Part I Contents – Part II Contents – Part III Full Papers Self-supervised Contrastive BERT Fine-tuning for Fusion-Based Reviewed-Item Retrieval 1 Introduction 2 Background 2.1 IR 2.2 Fusion 2.3 Contrastive Representation Learning 3 Proposed Fusion-based Methods for RIR 3.1 CLFR: Contrastive Learning for Late Fusion RIR 3.2 CEFR: Contrastive Learning for Early Fusion RIR 4 Experiments 4.1 Reviewed-Item Retrieval Dataset (RIRD) 4.2 Experimental Setup 4.3 Baselines 4.4 Evaluation Metrics 4.5 Results and Discussion 5 Conclusion References User Requirement Analysis for a Real-Time NLP-Based Open Information Retrieval Meeting Assistant 1 Introduction 2 Related Work 2.1 Meeting Assistants 2.2 General Guidelines Concerning Recommender Systems 2.3 User Experience of Recommender Systems 3 Method 3.1 User-Centered Design Approach 3.2 Participants 3.3 Study Material 3.4 Study Procedure 4 Results 4.1 Prior Experience with Recommender Systems 4.2 Participants' Experience with the Meeting Assistant 4.3 The Presenters' Experience with the Meeting Assistant 4.4 Envisioned Use Cases for the Meeting Assistant 5 Discussion and Recommendations 5.1 Introduce the System to Users 5.2 Annotate Visual Material with Titles and Keywords 5.3 Cater to User Preferences 5.4 Add Interactivity Options 5.5 Companion Style 6 Limitations and Future Work 7 Conclusion References Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering 1 Introduction and Motivations 2 Nodes Representation and Neighborhood Exploration in Graph Collaborative Filtering: A Formal Taxonomy 2.1 Preliminaries 2.2 Updating Node Representation Through Message-Passing 2.3 Weighting the Importance of Graph Edges 2.4 Going Beyond Message-Passing 2.5 A Taxonomy of Graph CF Approaches 3 Taxonomy-aware Evaluation 4 Trade-off Analysis 5 Conclusion and Future Work A Experimental Settings and Protocols References Exploiting Graph Structured Cross-Domain Representation for Multi-domain Recommendation 1 Introduction 2 Related Work 3 Methodology 4 Experiments 5 Conclusions and Future Work References Injecting the BM25 Score as Text Improves BERT-Based Re-rankers 1 Introduction 2 Related Work 3 Methods 3.1 First Stage Ranker: BM25 3.2 CECAT: Cross-Encoder Re-rankers Without BM25 Injection 3.3 CEBM25CAT: Cross-Encoder Re-rankers with BM25 Injection 3.4 Linear Interpolation Ensembles of BM25 and CECAT 4 Experimental Design 5 Results 5.1 Main Results: Addressing Our Research Questions 5.2 Analysis of the Results 6 Conclusion and Future Work References Quantifying Valence and Arousal in Text with Multilingual Pre-trained Transformers*-12pt 1 Introduction 2 Related Work 3 Models for Predicting Valence and Arousal from Text 4 Resources 5 Experimental Evaluation 5.1 Results with Different Models and Loss Functions 5.2 Results per Language and Dataset 5.3 Results in Zero-Shot Settings 6 Conclusions and Future Work References A Knowledge Infusion Based Multitasking System for Sarcasm Detection in Meme 1 Introduction 2 Related Work 3 Dataset 4 Methods 4.1 Feature Extraction Layer 4.2 Multimodal Fusion 4.3 Knowledge Infusion (KI) 4.4 Classification 5 Results 6 Analysis 7 Conclusion References Multilingual Detection of Check-Worthy Claims Using World Languages and Adapter Fusion 1 Introduction 2 Related Work 2.1 Identifying Check-Worthy Claims 2.2 Adapters 3 Datasets 3.1 Task Datasets 3.2 Topical Evaluation Dataset 4 Methodology 4.1 World Language Adapter Fusion 4.2 Implementation Details 5 Baselines 6 Results and Discussion 7 Further Analysis 8 Conclusion and Future Work References Market-Aware Models for Efficient Cross-Market Recommendation 1 Introduction 2 Related Work 3 Methodology 3.1 Market-Unaware Models 3.2 Market-Aware Models 4 Experimental Setup 5 Results and Discussion 5.1 Pairwise Experiments 5.2 Global Experiments 6 Conclusions and Future Work References TourismNLG: A Multi-lingual Generative Benchmark for the Tourism Domain 1 Introduction 2 Related Work 2.1 Data Science in Tourism 2.2 Domain-specific Pretrained Models 3 TourismNLG Benchmark 3.1 TourismNLG Datasets 3.2 TourismNLG Tasks 4 Baseline Models for TourismNLG 4.1 Model Selection 4.2 Pre-Training and Finetuning 4.3 Metrics 4.4 Implementation Details for Reproducibility 5 Experiments and Results 6 Conclusions References An Interpretable Knowledge Representation Framework for Natural Language Processing with Cross-Domain Application 1 Introduction 2 Related Work 3 Data Representation Framework 3.1 Tsetlin Machine 3.2 Data Representation 4 Experiments and Results 4.1 Datasets 4.2 Implementation Details 4.3 Baselines 4.4 Results and Analysis 4.5 Visualization 4.6 Concluding Remarks 5 A Case Study: Interpretability 6 Application: Domain Adaptation 7 Conclusion References Graph-Based Recommendation for Sparse and Heterogeneous User Interactions 1 Introduction 2 Related Work 3 Approach 3.1 Heterogeneous Graph Representation of User Interactions 3.2 Generating Recommendations Using Random Walks 3.3 Optimizing Edge Weights Using Genetic Algorithm 4 Experiments 4.1 Use Cases and Datasets 4.2 Evaluation Procedure 4.3 Baselines, Implementation, and Hyperparameters 4.4 Results 5 Conclusions and Future Work References It's Just a Matter of Time: Detecting Depression with Time-Enriched Multimodal Transformers 1 Introduction 2 Related Work 3 Method 4 Experiments 4.1 Datasets 4.2 Experimental Settings 4.3 Comparison Models 4.4 Training and Evaluation Details 5 Results 5.1 Performance Comparison with Prior Works 5.2 Ablation Study 5.3 Error Analysis 5.4 Limitations and Ethical Considerations 6 Conclusion References Recommendation Algorithm Based on Deep Light Graph Convolution Network in Knowledge Graph 1 Introduction 2 Related Work 2.1 Problem Formulation 2.2 Recent Work 3 Method 3.1 Overall Structure of KDL-GCN 3.2 User-Entity Bipartite Graph Method 3.3 Deep Light Graph Convolution Network 3.4 Node Embedding Fusion and Rating Prediction 3.5 Optimization 3.6 Time Complexity Analysis 4 Experiments 4.1 Experiment Setup 4.2 Performance Comparison 4.3 Ablation Analysis 5 Conclusion References Query Performance Prediction for Neural IR: Are We There Yet?*-12pt 1 Introduction 2 Related Work 3 Methodology 4 Experimental Setup 5 Experimental Results 5.1 QPP Models Performance 5.2 ANOVA Analysis 6 Conclusion and Future Work References Item Graph Convolution Collaborative Filtering for Inductive Recommendations 1 Introduction 2 Preliminaries and Related Work 2.1 GCN-Based Recommender 2.2 Item-Based Recommender 3 Methodology 3.1 Graph Projection Module 3.2 Item Embedding Module 3.3 User Embedding Module 3.4 Model Training 4 Experiments 4.1 Datasets 4.2 Baselines 4.3 Transductive Performance 4.4 Inductive Performance 4.5 Ablation Study 5 Conclusion and Future Work References CoLISA: Inner Interaction via Contrastive Learning for Multi-choice Reading Comprehension 1 Introduction 2 Task Formulation 3 Methodology 3.1 DPR-Based Retriever 3.2 In-Sample Attention Mechanism 3.3 Contrastive Learning for Inner Interaction 4 Experimentation 4.1 Experimental Settings 4.2 Main Results 4.3 Analysis 5 Related Work 6 Conclusion References Viewpoint Diversity in Search Results*-12pt 1 Introduction 2 Related Work 3 Evaluating Viewpoint Diversity in Search Results 3.1 Measuring Polarity, Stance, and Logic Bias 3.2 Normalized Discounted Viewpoint Bias 4 Case Study: Evaluating, Fostering Viewpoint Diversity 4.1 Materials 4.2 Viewpoint Diversity Evaluation Results 4.3 Viewpoint Diversification 5 Discussion 6 Conclusion References COILcr: Efficient Semantic Matching in Contextualized Exact Match Retrieval*-12pt 1 Introduction 2 Related Work 3 COILCR: Contextualized Inverted Lists with Canonical Representations 3.1 Term Score Factorization 3.2 Approximate Term Semantic Interaction 4 Experimental Methodology 5 Experiments 5.1 Passage Retrieval Effectiveness 5.2 Balancing Model Efficiency 5.3 Canonical Representation Analysis 6 Conclusion and Future Work References Bootstrapped nDCG Estimation in the Presence of Unjudged Documents*-12pt 1 Introduction 2 Background and Related Work 3 Bootstrapping nDCG Scores 3.1 Preparatory Theoretical Considerations 3.2 Our Bootstrapped nDCG Estimation Approach 3.3 Conceptual Comparison 4 Evaluation 4.1 Experimental Setup 4.2 Evaluation Results 5 Conclusion References Predicting the Listening Contexts of Music Playlists Using Knowledge Graphs*-12pt 1 Introduction 2 Related Work 3 Method 3.1 Matrix Factorisation-Based 3.2 Convolutional Neural Network-Based 3.3 Knowledge Graph-Based 3.4 Hybrid 3.5 Implementation Details 4 Experiments 4.1 Dataset 4.2 Metrics 4.3 Results 5 Conclusions and Future Work References Keyword Embeddings for Query Suggestion*-12pt 1 Introduction 2 Related Work 3 Proposal 4 Experimental Setup 4.1 Datasets 4.2 Baselines 4.3 Evaluation 4.4 Experimental Settings 5 Results 6 Conclusions References Domain-Driven and Discourse-Guided Scientific Summarisation 1 Introduction 2 Related Work 3 Method 3.1 Salient Section Determination 3.2 Rhetorical Content Modelling 3.3 Centrality-based Summariser 4 Experimental Setup 5 Experimental Results 5.1 Structural Discourse Analyses 5.2 Abstract Generation 6 Conclusions References Injecting Temporal-Aware Knowledge in Historical Named Entity Recognition 1 Introduction 2 Related Work 3 Datasets 4 Temporal Knowledge-based Contexts for Named Entity Recognition 4.1 Temporal Information Integration 4.2 Context Retrieval 4.3 Named Entity Recognition Architecture 5 Experimental Setup 5.1 Results 5.2 Impact of Time Intervals 5.3 Impact of Digitization Errors 5.4 Limitations 6 Conclusions & Future Work References A Mask-based Logic Rules Dissemination Method for Sentiment Classifiers 1 Introduction 2 Related Work 2.1 Implicit Methods to Construct Neural-Symbolic Systems 2.2 Explicit Methods to Construct Neural-Symbolic Systems 3 Methodology 3.1 Sources of Logic Rules 3.2 Rule-Mask Mechanism to Disseminate Logical Information 4 Covid-19 Twitter Dataset 4.1 Sentiment Labels 4.2 Rule Labels 4.3 Contrast Labels 4.4 Constructed Dataset 5 Experimental Results 5.1 Dataset Preparation 5.2 Sentiment Classifiers 5.3 Metrics 5.4 Results 6 Conclusion References Contrasting Neural Click Models and Pointwise IPS Rankers 1 Introduction 2 Related Work 3 Background 4 Methods 4.1 Comparing Unbiasedness 4.2 A Difference in Loss Magnitude 5 Experimental Setup 6 Results and Analysis 6.1 Main Findings 6.2 Further Analyses 7 Conclusion References Sentence Retrieval for Open-Ended Dialogue Using Dual Contextual Modeling*-12pt 1 Introduction 2 Related Work 3 Retrieval Framework for Open Dialogues 3.1 Sentence Retrieval Methods 4 Experimental Setting 5 Results 6 Conclusions and Future Work References Temporal Natural Language Inference: Evidence-Based Evaluation of Temporal Text Validity 1 Introduction 2 Related Work 2.1 Temporal Information Retrieval and Processing 2.2 Commonsense Reasoning 2.3 Natural Language Inference 2.4 Incorporation of Knowledge Bases 2.5 Comparison with Related Tasks 3 Task Definition 4 Proposed Method 4.1 Encoding Knowledge 4.2 Combined Model 5 Dataset 5.1 Dataset Construction 5.2 Dataset Statistics 6 Experiments 6.1 Experimental Settings 6.2 Experiments with NLI Pre-training 6.3 Incorporating Common-sense Knowledge 6.4 Testing Different Knowledge Embedding Approaches 7 Conclusion and Future Work References Theoretical Analysis on the Efficiency of Interleaved Comparisons*-12pt 1 Introduction 2 Related Works 2.1 User Click Behavior 2.2 Online Evaluation 3 Preliminary 3.1 Interleaving Method for Analysis (IMA) 3.2 A/B Testing 3.3 Notation 3.4 Definition of Efficiency 4 Theoretical Analysis 5 Numerical Analysis 6 User Simulation 6.1 Datasets 6.2 User Behavior 6.3 Results 7 Conclusion References Intention-Aware Neural Networks for Question Paraphrase Identification 1 Introduction 2 Related Work 3 Preliminary 3.1 VAE, CVAE and MVAE 3.2 Heuristic Intention Extraction 4 Approach 4.1 CVAE-Based Intention-Aware QPI 4.2 MVAE-Based Intention-Aware QPI 5 Experimentation 5.1 Corpora and Evaluation Metrics 5.2 Hyperparameter Settings 5.3 Main Results 5.4 Ablation Experiments 5.5 Effectiveness Analysis 5.6 Case Study 6 Conclusion References Automatic and Analytical Field Weighting for Structured Document Retrieval 1 Introduction 2 Background 3 Information Content Field Weighting (ICFW) 3.1 Model Specification 3.2 Setting the Scale Parameter Lambda 3.3 Approximating Appropriate Values for Lambda Threshold 3.4 Optimising ICFW 4 Experimentation and Analysis 4.1 Data Collections 4.2 Baselines and Methodology 4.3 RQ1: The Effect of Term Frequency Saturation on Performance 4.4 RQ2: Estimating Lambda Analytically 4.5 RQ3: Optimized ICFW Performance 5 Conclusion A Scale Parameter Threshold References An Experimental Study on Pretraining Transformers from Scratch for IR 1 Introduction 2 Related Work 3 Pretraining from Scratch 3.1 Pretraining 4 Experiments 4.1 RQ1: Are Models Fully Trained on MSMARCO as Good as Models Pretrained on a Diverse Collection Set? 4.2 RQ2: Do Models Pretrained in MSMARCO Generalize Well on Other Collections? 4.3 RQ3: Can We Take Advantage of that Pretraining from Scratch in Collections of Specialized Domains/Languages 4.4 RQ4: Impact of Architectures 5 Conclusion References Neural Approaches to Multilingual Information Retrieval*-12pt 1 Introduction 2 Background 3 Fine-Tuning MPLMs for MLIR 3.1 English Training (ET) 3.2 Multilingual Translate Training (MTT) 4 Experiments 4.1 Neural Retrieval Models 4.2 Evaluation 5 Results 5.1 Multilingual Batching for Fine-Tuning 5.2 Effectiveness Relative to Baselines 5.3 Preprocessing and Indexing Time 6 Analysis 6.1 Language Bias 6.2 Example Queries 7 Conclusion and Future Work A MTT Implementation Details References CoSPLADE: Contextualizing SPLADE for Conversational Information Retrieval*-12pt 1 Introduction 2 Related Works 3 Model 3.1 First Stage 3.2 Reranking 4 Experimental Protocol 4.1 Datasets 4.2 Metrics and Baselines 5 Results 5.1 First-Stage Ranking Effectiveness 5.2 Second-Stage Ranking Effectiveness 5.3 Effectiveness Compared to TREC CAsT Participants 5.4 Efficiency 6 Conclusion References SR-CoMbEr: Heterogeneous Network Embedding Using Community Multi-view Enhanced Graph Convolutional Network for Automating Systematic Reviews 1 Introduction 2 Preliminaries 2.1 Heterogeneous Information Network 2.2 Graph Convolutional Networks 3 Related Works 4 SR-CoMbEr 4.1 Heterogeneous Community Detection 4.2 Community Multi-view Learning 4.3 Global Consensus 5 Experimental Design 5.1 Dataset 5.2 Baselines 5.3 Evaluation Metrics 5.4 Implementation Details 6 Experimental Results 6.1 Systematic Review 6.2 Ablation Study 7 Conclusion References Multimodal Inverse Cloze Task for Knowledge-Based Visual Question Answering 1 Introduction 2 Related Work 3 Methods 3.1 Information Retrieval Framework 3.2 Models 3.3 Training Stages 3.4 Inference 3.5 Implementation Details 4 Results 4.1 Information Retrieval 4.2 Reading Comprehension 5 Generic vs. Specialized Image Representations 6 Conclusion and Perspectives References A Transformer-Based Framework for POI-Level Social Post Geolocation 1 Introduction 2 Related Work 2.1 Post Geolocation 2.2 Hierarchical Geolocation 3 Method 3.1 Problem Formulation 3.2 Method Overview 3.3 Feature Representation 3.4 Feature Fusion 3.5 Hierarchical Prediction 4 Experimental Setting 4.1 Datasets 4.2 Evaluation Metrics 4.3 Parameter Setting 4.4 Baselines 5 Experimental Results 5.1 Baseline Comparison 5.2 Representation Combination Selection 5.3 Ablation Study 5.4 Coarse-Level Geolocation 6 Conclusion References Document-Level Relation Extraction with Distance-Dependent Bias Network and Neighbors Enhanced Loss 1 Introduction 2 Methodology 2.1 Crossing-Distance Calculation 2.2 SDBN 2.3 Bias Network 2.4 Neighbors Enhanced Loss 3 Experiment 3.1 Datasets 3.2 Implementation Details 3.3 Compared Methods 3.4 Main Results 3.5 Ablation Study 3.6 Robustness Analysis 3.7 Hyper-parameter Analysis 3.8 Case Study 4 Related Work 5 Conclusion References Investigating Conversational Agent Action in Legal Case Retrieval 1 Introduction 2 Related Work 3 User Study 3.1 Conversational Legal Case Retrieval 3.2 Tasks and Participants 3.3 Procedure 4 Results 4.1 Analysis on Conversational Agent Action 4.2 Conversational Agent Action Prediction 5 Conclusion References MS-Shift: An Analysis of MS MARCO Distribution Shifts on Neural Retrieval 1 Introduction 2 Related Work 3 Methodology 3.1 Distribution Shifts 3.2 Evaluation Procedure 4 Experimental Setup 5 Results and Analysis 5.1 Performance Evaluation on Distribution Shifts 5.2 Train/Test Distribution Similarity 6 Conclusion References Listwise Explanations for Ranking Models Using Multiple Explainers*-12pt 1 Introduction 2 Related Work 3 Background and Preliminaries 3.1 Explainers for Ranking 3.2 Explanations to a Ranking Model 3.3 Problem Statement 4 Generalized Preference Coverage 4.1 The Preference Coverage Framework 4.2 Optimizing PC for Multiple Explainers 5 Experimental Setup 5.1 Datasets and Ranking Models 5.2 Baseline and Competitors 5.3 Metrics 6 Evaluation Results 6.1 Effectiveness of Explanations 6.2 Utility of Explanations 7 Conclusion and Outlook References Improving Video Retrieval Using Multilingual Knowledge Transfer 1 Introduction 2 Related Work 2.1 Video Retrieval 2.2 Multilingual Training 3 MKTVR: Multilingual Knowledge Transfer for Video Retrieval 3.1 Problem Statement 3.2 Approach 4 Experiments 4.1 Datasets 4.2 Metrics 4.3 Implementation Details 5 Results and Discussion 5.1 Evaluation on English Video Retrieval Datasets 5.2 Evaluation on Multilingual Video Retrieval Datasets 5.3 Ablation Studies 6 Conclusion References Service Is Good, Very Good or Excellent? Towards Aspect Based Sentiment Intensity Analysis 1 Introduction 2 Resource Creation 3 Methodology 3.1 Seq2Seq Generation 3.2 Model Explainability 4 Experiments and Analysis 4.1 Experimental Results 4.2 Detailed Analysis 5 Conclusion References Effective Hierarchical Information Threading Using Network Community Detection*-12pt 1 Introduction 2 Related Work 3 Proposed Approach: HINT 4 Experimental Setup 5 Offline Evaluation 5.1 Results 5.2 Ablation Study 6 User Study 6.1 Results 7 Identifying Incremental Threads 8 Conclusions References HADA: A Graph-Based Amalgamation Framework in Image-Text Retrieval 1 Introduction 2 Related Work 3 Methodology 3.1 Revisit State-of-the-Art Models 3.2 Create Graph Structure 3.3 Graph Neural Network 3.4 Training Tasks 4 Experiment 4.1 Dataset and Evaluation Metrics 4.2 Implementation Details 4.3 Baselines 4.4 Comparison to Baseline 4.5 HADA with Other Input Models 5 Conclusion References Author Index