دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Syed Shahabuddin (editor), Adarsh Kumar Pandey (editor), Mohammad Khalid (editor), Priyanka Jagadish (editor) سری: Engineering Materials ISBN (شابک) : 9783030620899, 3030620891 ناشر: Springer سال نشر: 2021 تعداد صفحات: 353 [349] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advances in Hybrid Conducting Polymer Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در فناوری پلیمرهای رسانا هیبریدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب روشهای سنتز، تکنیکهای توصیف، خواص و کاربردهای پلیمرهای رسانای ترکیبی را ارائه میکند. تاکید ویژه بر کاربردهای پلیمرهای رسانای ترکیبی، با فصلهایی از دستگاههای الکترونیکی، اصلاح محیط، و حسگرها تا کاربردهای پزشکی داده شده است.
This book presents synthesis methods, characterization techniques, properties and applications of hybrid conducting polymers. Special emphasis is given to the applications of hybrid conductive polymers, with chapters ranging from electronic devices, environmental remediation, and sensors, to medical applications.
Preface Contents Introduction to Conducting Polymers 1 Introduction 1.1 Historical Background of the Development of Conducting Polymers 1.2 Types of Conducting Polymers and Their Properties 2 Synthesis Pathways and Polymerisation Mechanism 2.1 Synthesis Method for Conducting Polymers (CPs) 3 Conclusion References Intrinsically Conducting Polymer Based Nanocomposite in Photocatalytic Study 1 Introduction 2 Synthesis Method for ICPn 2.1 In-Situ and Ex-Situ Synthesis 2.2 Direct Mixing Method 2.3 Intercalation Method 2.4 Other Methods 3 Conductive Polymer-Based Nanocomposite for Photocatalysis 3.1 Process and Fundamental of Photocatalysis 3.2 Properties of Photocatalyst Material 3.3 Role of ICPn in Photocatalysis 3.4 Application of Photocatalyst Based ICPn 3.5 Different Type of ICPn for Photocatalytic Study 4 Conclusion and Recommendations References Energy Storage Devices (Supercapacitors and Batteries) 1 Introduction 2 Proposed Mechanism for Designing Hybrid Conducting Polymer 3 Batteries 3.1 Metal Oxide/conducting Polymer 3.2 Metal Chalcogenides/conducting Polymer 3.3 Carbon Supported Hybrid Materials 4 Supercapacitors 5 Conclusion References Nanoelectronics Devices (Field-Effect Transistors, Electrochromic Devices, Light-Emitting Diodes, Dielectrics, Neurotransmitters) 1 Introduction 1.1 Conducting Polymers 2 Applications of Conducting Polymers (Nanoelectronics Devices) 2.1 Field-Effect Transistors (FETs) 2.2 Electrochromic Devices (ECDs) 2.3 LEDs 2.4 Dielectrics 2.5 Electrochemical Detection of Neurotransmitters Using Conducting Polymers 3 Conclusion References Energy Harvesting Devices 1 Introduction 2 Thermoelectric Background 3 Thermoelectric Performance of the Conducting Polymers 3.1 Electrical Parameters and Conductivity 3.2 Seebeck Coefficient 3.3 Thermal Conductivity 4 Classification of Thermoelectric Materials 5 Conducting Polymer Thermo-Electric Material 5.1 P-type Conducting Polymers PEDOT: PSS 6 N-type Conducting Polymer Thermoelectric Materials 7 Flexible Thermoelectric Power Generators—TEGs 8 Piezoelectric Energy Harvesting Devices 9 A New Hybrid Piezoelectric Electromagnetic Micro-vibration Energy Harvester 10 The Efficiency of Piezoelectric Device 11 Classification of Piezoelectric Materials 11.1 Materials and Fabrication 12 Application of Piezoelectric Transducers 13 Developments, Challenges, and Future of Piezoelectric Devices 14 Piezoelectric Markets 15 Piezoelectric Materials 16 Innovative Architectures of Piezoelectric Devices 17 Polymers Applications in Solar Cells 17.1 Organic Solar Cells 17.2 Polymer-Based Hybrid Cells 18 Conclusion References Perspectives of Conducting Polymers Towards Heat Transfer Applications 1 Introduction 2 Thermal Transport of Conducting Polymers 3 Integration of PANI in Convective Heat Transfer Research 4 Conclusions References Conducting Polymer Based Nanoadsorbents for Removal of Heavy Metal Ions/Dyes from Wastewater 1 Introduction 1.1 The Importance of Clean Aquatic Environment 1.2 Pollutant in Water 1.3 Methods for Removal of Heavy Metal Ions and Pollutants from Wastewater 1.4 Nanoadsorbents 1.5 Conducting Polymers 2 Synthesis of Certain Conducting Polymer Based Nanoadsorbents 2.1 Polypyrrole 2.2 Polyalinine 2.3 Polythiophenes Derivatives 2.4 Other Conducting Polymers 3 Recommendations and Future Prospects 4 Conclusion References Chemical, Gas and Optical Sensors Based on Conducting Polymers 1 Introduction 2 Overview of Hybrid Conducting Polymers-Based Chemical Sensors 3 Nanostructured Conducting Polymers for Sensor Applications 4 Enzymatic and Non-enzymatic Chemical Sensors Based on Conducting Polymers 5 Gas Sensors Based on Conducting Polymers 6 Hybrid Conducting Polymers for Ammonia Detection 7 Hybrid Conducting Polymers for Nitrogen Oxide (NOx) Detection 8 Hybrid Conducting Polymers for Carbon Monoxide (CO) Detection 9 Hybrid Conducting Polymers for Carbon Dioxide (CO2) Detection 10 Hybrid Conducting Polymers for Hydrocarbon Vapor Detection 11 Conducting Polymers for Quantification of Other Gaseous Analytes 12 Optical Sensing Applications of Conducting Polymers 13 Challenges in HCP-Based Sensors 14 Conclusion References Advances in Hybrid Conducting Polymer Technology for EMI Shielding Materials 1 Introduction 1.1 Electromagnetic Interference (EMI) Pollution 2 Chapter Details 3 EMI Shielding Effectiveness 3.1 Mechanisms of EMI Shielding 3.2 EMI Related Influencing Parameters for IPCs and CPCs 4 Measurement Technique 5 Polymer Composites for EMI Application 5.1 Intrinsically Conductive Polymers 5.2 Coordination or Inorganic Conducting Polymers 5.3 Extrinsically Conductive Polymers 6 Techniques of Polymerization 6.1 Bulk or Mass Polymerization 6.2 Solution Polymerization 6.3 Suspension Polymerization 6.4 Emulsion Polymerization 7 Popular Methods for Synthesis of ICPs and CPCs Composites 7.1 In-Situ Polymerization Methods 7.2 Solution Intercalation Methods 7.3 Melt Blending Methods 8 Metal, Alloys, Ceramics and Oxides Anchored Heterogeneous ICPs and CPCs Composites 9 2D Filler Based Polymer Composites 9.1 Carbon Nanofiller Incorporated with ICPs and CPCs Nanocomposites 9.2 2D Transition Metal Carbides (MXenes) 10 Conclusion 11 Challenges and Future Opportunities References Advanced Hybrid Conducting Polymers: Tissue Engineering Aspects 1 Introduction 2 History and Specific Behavior of CPs 3 Fabrication of Conducting Biomaterials 3.1 Pure CP Films 3.2 Conducting Blends or Composites 3.3 Conducting Copolymer Films 3.4 Hydrogels 4 Tissue Engineering Applications 4.1 Bone Tissue Engineering 4.2 Skeletal Muscle Tissue Engineering 4.3 Nerve Tissue Engineering 4.4 Cardiac Tissue Engineering 4.5 Skin Tissue Engineering 5 Conclusions 6 Future Directions References Conducting Polymer-Based Nanocomposites Against Pathogenic Bacteria 1 Conducting Polymers 1.1 Polypyrrole (PPy) 1.2 Polyaniline (PANI) 1.3 Polythiophene (PTh) 1.4 Poly(3,4-Ethyldioxythiophene) (PEDOT) 1.5 Polycarbazole (PC) 2 Pathogenic Bacteria 3 Antibacterial Effects of Conducting Polymers 4 Conducting Polymer-Based Nanocomposites (CP-NC) 5 Antibacterial Effects of Conducting Polymer-Based Nanocomposites 5.1 Polypyrrole-Based Nanocomposites 5.2 Polyaniline-Based Nanocomposites 5.3 Polythiophene-Based Nanocomposites 5.4 PEDOT-Based Nanocomposites 5.5 Polycarbazole-Based Nanocomposites 6 Mechanism of Action 7 Conclusion References Towards the Conducting Polymer Based Catalysts to Eliminate Pt for Dye Sensitized Solar Cell Applications 1 Introduction 2 Most Common Conducting Polymers 2.1 Polypyrrole (PPy) 2.2 Polyaniline (PANI) 2.3 Poly(3,4-Ethylene-Dioxythiophene) (PEDOT) 3 Polypyrrole (PPy) Based Nanocomposites 4 Polyaniline (PANi) Based Nanocomposites 5 Poly(3,4-Ethylene-Dioxythiophene) (PEDOT) Based Nanocomposite 6 Conclusion References Basics of Dye Sensitized Solar Cell and Use of Conductive Polymer as Counter Electrode 1 Introduction 2 Solar Cells 3 Dye-Sensitized Solar Cells 4 Preparation of CEs 4.1 Electrochemical Deposition 4.2 Chemical Vapor Deposition 4.3 Thermal Decomposition or Pyrolysis 4.4 Chemical Reduction 4.5 Sputter Deposition 4.6 Hydrothermal Reaction 4.7 In Situ Polymerization 4.8 Electrochemical Synthesis Method 4.9 Chemical Synthesis Method 4.10 Solid State Procedure 5 Characterization of CE 5.1 Photovoltaic Measurements 5.2 Polymer CEs 5.3 Poly(3,4-Ethylenedioxythiophene) 5.4 Polyaniline 5.5 Polypyrrole (PPy) 6 Conclusion References