دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Saber Elaydi, Mustafa R. S. Kulenović, Senada Kalabušić سری: Springer Proceedings in Mathematics & Statistics, 416 ISBN (شابک) : 3031252241, 9783031252242 ناشر: Springer سال نشر: 2023 تعداد صفحات: 533 [534] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advances in Discrete Dynamical Systems, Difference Equations and Applications: 26th ICDEA, Sarajevo, Bosnia and Herzegovina, July 26-30, 2021 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفتها در سیستمهای دینامیکی گسسته، معادلات تفاوت و کاربردها: بیست و ششمین ICDEA، سارایوو، بوسنی و هرزگوین، 26-30 ژوئیه، 2021 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب شامل مقالات منتخب بیست و ششمین کنفرانس بینالمللی معادلات و کاربردهای تفاوت، ICDEA 2021 است که به طور مجازی در دانشگاه سارایوو، بوسنی و هرزگوین، در ژوئیه 2021 برگزار شد. این کتاب شامل آخرین و مهمترین تحقیقات و دستاوردها در معادلات تفاوت است. سیستم های دینامیکی گسسته و کاربرد آنها در رشته های مختلف علمی این کتاب برای دکتری جالب است. دانشجویان و محققانی که میخواهند با آخرین تحقیقات، پیشرفتها و دستاوردها در معادلات تفاوت، سیستمهای دینامیکی گسسته و کاربردهای آنها، مسائل دنیای واقعی بهروز باشند.
This book comprises selected papers of the 26th International Conference on Difference Equations and Applications, ICDEA 2021, held virtually at the University of Sarajevo, Bosnia and Herzegovina, in July 2021. The book includes the latest and significant research and achievements in difference equations, discrete dynamical systems, and their applications in various scientific disciplines. The book is interesting for Ph.D. students and researchers who want to keep up to date with the latest research, developments, and achievements in difference equations, discrete dynamical systems, and their applications, the real-world problems.
Contents A Discrete-Time Predator-Prey Model with Selection and Mutation 1 Introduction 2 The Model 3 The Pure-Selection Model Without Mutation 3.1 Equilibria and Their Stabilities 3.2 Persistence 4 The Full Model with Mutation 4.1 Coexistence and Persistence 5 Numerical Simulations 5.1 Numerical Simulations for the Pure Selection Case 5.2 Numerical Simulations for a Selection-Mutation Case 6 Concluding Remarks References On the Dynamics and Asymptotic Behaviour of the Mean Square of Scalar Linear Stochastic Difference Equations 1 Introduction 2 Standing Assumptions and Precise Formulation of the Problem 3 Volterra Summation Equations for the Mean Square 4 Asymptotic Behaviour, p=1 4.1 The Simple Case q=1 4.2 Preparatory Results 4.3 Asymptotic Behaviour 4.4 Covariance Dynamics 5 The Case When α=0 References Border Collision and Heteroclinic Bifurcations in a 2D Piecewise Smooth Map 1 Introduction 2 Investigated Map 3 Phase Portrait Transformations 3.1 Fold Border Collision Bifurcation 3.2 Heteroclinic Tangles: Destruction and Creation of a Closed Invariant Curve 4 Conclusion References Using Homotopy Link Function with Lipschitz Threshold in Studying Synchronized Fluctuations in Hierarchical Models 1 Introduction 2 Analytical Derivation of Drive-Response System 2.1 Complete Synchronization Using Contraction Mapping Theorem 2.2 Local Dynamics, Attractors and Attracting Set of Drive-Response System 3 Numerical Results 4 Conclusion References Solving Third-Order Linear Recurrence Relations with Applications to Number Theory and Combinatorics 1 Introduction 2 Previous Works 3 Preliminaries 4 Main Results 4.1 General Solution 4.2 Summatory Formula 5 Applications 5.1 Tribonacci Numbers 5.2 Tribonacci Polynomials 6 Future Work References A Survey on Max-Type Difference Equations 1 Introduction 2 Preliminaries 3 Relation with Piecewise Linear Difference Equations 4 A Version of Lyness Difference Equation with Maximum 4.1 Case k=1, l=0: xn+1 = max{xn,A }xn-1 4.2 Case k=1, l=1: xn+1 = max{xn,A}xnxn-1 4.3 Case k=2, l=1: xn+1 = max{xn2,A}xnxn-1 4.4 A Generalization of the Lyness' Max-Type Difference Equation 5 Reciprocal Difference Equation with Maximum 5.1 Constant Coefficients 5.2 Periodic Coefficients 5.3 Powers in the Denominator 6 Other Classes of Max-Type Difference Equations 7 Rank-Type Difference Equations 8 Applications 9 Open Problems 10 Conclusions References Catalan Numbers Recurrence as a Stationary State Equation of the Probabilistic Cellular Automaton 1 Introduction 2 The Automaton 3 Equations for Expected Values 3.1 Stationary State 3.2 Balance Equation for the Density 3.3 Balance Equation for the Total Number of Clusters 3.4 Balance Equation for the Number of M-Clusters 4 Catalan Numbers Recurrence 5 Comments References Oscillation of Second Order Impulsive Neutral Difference Equations of Non-canonical Type 1 Introduction 2 Oscillation Criteria References On the Robustness Property of Nonuniform Exponential Dichotomies 1 Introduction 2 Robustness Property References Implicit Linear First Order Difference Equations Over Commutative Rings 1 Introduction 2 Implicit Linear Difference Equation bxn+1=axn+f 3 Periodic Solutions of Implicit Linear Difference Equations 4 Quasi-polynomial Solution of Implicit Linear Difference Equation 5 The Case of a Local Ring References Global Attraction and Repulsion of a Heteroclinic Limit Cycle in Three Dimensional Kolmogorov Maps 1 Introduction 2 Carrying Simplex of Competitive Kolmogorov Maps 3 Global Attraction and Repulsion of a Heteroclinic Limit Cycle 4 An Example 5 Conclusion References Bifurcation and Stability of a Ricker Host-Parasitoid Model with a Host Constant Refuge and General Escape Function 1 Introduction 2 Equilibrium Points 3 Linearized Stability Analysis 3.1 Local Stability of the Exclusion Equilibrium Point 3.2 Linearized Stability of the Coexistence Equilibrium 4 Local Bifurcations of Equilibrium Points 4.1 Period-Doubling Bifurcation of Exclusion Equilibrium Point 4.2 Transcritical Bifurcation of Exclusion Equilibrium Point 4.3 Local Bifurcations of Positive Equilibrium Point 5 Boundedness of the Solutions 6 Global Attractivity 7 Uniform Persistence 8 Examples 9 Conclusion and Further Discussion References SageMath Tools for Stability and Bifurcation for Discrete Dynamical Systems 1 Introduction 2 Parameter Curves 2.1 One-Dimensional Maps: Parameter-Derivative Plane 2.2 Two-Dimensional Maps: tr-det Plane 3 Basins of Attraction 3.1 A Closeness Function 3.2 An Algorithm 3.3 One-Dimensional Maps 3.4 Two-Dimensional Maps 4 Stability Region in Parameter-Parameter Plane 4.1 One-Dimensional Maps 4.2 Two-Dimensional Maps 5 Conclusions References Pullback Attractors of Nonautonomous Lattice Difference Equations 1 Introduction 2 Set Up 2.1 Some Basic Estimates 3 Nonautonomous Discrete Time Lattice Dynamical System 3.1 Existence of a Pullback Attractor 3.2 Existence of a Forward ω-Limit Sets 4 Discrete Time Skew Product Lattice Systems 4.1 Some Basic Estimates 4.2 Existence of a Random Attractor References Global Dynamics of Modified Discrete Lotka-Volterra Model 1 Introduction and Preliminaries 2 Global Dynamic Results 3 Global Dynamics of System (1) 3.1 Local Stability Results 3.2 Global Stability Results References Nonwandering Sets and Special α-limit Sets of Monotone Maps on Regular Curves 1 Introduction 2 Preliminaries 3 Nonwandering Sets of Monotone Maps on Regular Curves 4 The Space of Minimal Sets with Respect to the Hausdorff Metric 5 On the Continuity of Limit Maps ωf and αf 6 On Special α-limit Sets 6.1 Relation Between Nonwandering Sets, α-limit Sets and Special α-limit sets 6.2 Further Results on Special α-limit Sets References Asymptotic Stability, Bifurcation Analysis and Chaos Control in a Discrete Evolutionary Ricker Population Model with Immigration 1 Introduction 2 An Evolutionary Discrete Model 3 Local Dynamics 4 Bifurcations Analysis 4.1 Existence of Bifurcations About the Positive Fixed Point of the Model 4.2 Neimark–Sacker Bifurcation About (x(b0), u(b0)) 4.3 Period-Doubling Bifurcation About (x(b0), u(b0)) 5 Chaos Control 5.1 State Feedback Control 5.2 Pole Placement Method 5.3 Chaos Control Using Hybrid Method 6 Numerical Simulations 7 Concluding Remakes References Weighted Norms In Advanced Volterra Difference Equations 1 Introduction 2 Boundedness of Solutions 3 Weighted Norm 4 Applications 5 Concluding Remarks References Comparison of Tests for Oscillations in Delay/Advanced Difference Equations with Continuous Time 1 Introduction 2 The Main Test 3 The Comparison to the Higher-Order Functional Equations 3.1 Nowakowska-Werbowski Conditions 3.2 Zhang-Choi Conditions 3.3 The Comparison to the Second-Order Functional Equations 4 The Comparison to the Delay Difference Equations 4.1 Ladas-Pakula-Wang Conditions 4.2 Zhang-Yan-Zhao Conditions 4.3 Zhang-Yan-Choi Conditions 4.4 Zhang-Yan Conditions 5 Summary References Krause Mean Processes Generated by Cubic Stochastic Matrices IV: Off-Diagonally Uniformly Positive Nonautonomous Cubic Stochastic Matrices 1 Introduction 2 Krause Mean Processes 3 Quadratic Stochastic Processes 4 The Krause Mean Process Generated by the Quadratic Stochastic Operator 5 The Main Result 6 Discussions 7 Conclusion References Linearization for Difference Equations with Infinite Delay 1 Introduction 2 Preliminaries 3 Main Result 3.1 Uniform Exponential Dichotomy Case References A Method to Derive Discrete Population Models 1 Introduction 2 Discrete Model Derivation 3 Analysis of the Discrete Model 3.1 black Extinction and Competitive Exclusion 3.2 Relationship between the Discrete Model and black its Continuous black Counterpart 3.3 Importance of the Composition of the Model Parameters 4 Examples of Models Obtained Using the Derivation Method 4.1 Single Species Models 4.2 Multi-Species Models 5 Conclusion References Reproduction Number Versus Turnover Number in Structured Discrete-Time Population Models 1 Introduction 2 Preview: Turnover/Reproduction Trichotomy 2.1 Iteroparous Populations with Mating 2.2 Individual Development Modeled by Feller Kernels 3 More About the Spectral Radius 3.1 An Example by Bonsall [Sect. 2(iv)]ch23Bon58 3.2 Lower and Upper Bounds for the Spectral Radius 3.3 Commutation Rules 3.4 Monotonicity of the Spectral Radius 3.5 Cartesian Products 3.6 Existence of (Lower) Eigenvectors 3.7 Left Resolvents 4 Turnover Versus Reproduction Number 4.1 Starting Point: Next Generation Operator 4.2 Starting Point: Basic Turnover Operator 4.3 Synopsis 4.4 Cones with Uniform Order Units 5 Additive Perturbations of Rank-One Operators 6 Iteroparous Populations with Mating 6.1 Iteroparous Populations More Concrete 6.2 A Rank-Structured Population 7 Discussion References