دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Joel J. P. C. Rodrigues (editor)
سری:
ISBN (شابک) : 0081027931, 9780081027936
ناشر: Woodhead Pub Ltd
سال نشر: 2020
تعداد صفحات: 309
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Advances in Delay-tolerant Networks Dtns: Architecture and Enhanced Performance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در شبکه های مقاوم به تأخیر Dtns: معماری و عملکرد پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیشرفتها در شبکه های تحمل تاخیر: معماری و عملکرد پیشرفته، ویرایش دوم یک نمای کلی مهم از شبکه های تحمل تاخیر (DTN) برای محققان الکترونیک، مهندسی کامپیوتر، مخابرات و شبکه برای کسانی که در دانشگاه و تحقیق و توسعه در بخش های صنعتی بخش اول، فناوری درگیر و چشمانداز بهبود عملکرد، از جمله انواع مختلف DTN و کاربردهای آنها، مانند ارتباطات ماهوارهای و فضای عمیق و ارتباطات خودرویی را بررسی میکند. بخش دوم بر این موضوع تمرکز دارد که چگونه میتوان این فناوری را بیشتر بهبود بخشید، به موضوعاتی مانند دستهبندی دادهها، مسیریابی فرصتطلبانه، جریان دادههای قابل اعتماد، و پتانسیل انتخاب سریع و انتشار پیامهای فوری پرداخت.
شبکههای فرصتطلب و تحملکننده تاخیر مشکل اتصال متناوب را در شبکهای که در آن تاخیرهای طولانی بین ارسال و دریافت پیام وجود دارد یا دورههایی از قطع ارتباط وجود دارد، برطرف میکنند.
Advances in Delay-Tolerant Networks: Architecture and Enhanced Performance, Second Edition provides an important overview of delay-tolerant networks (DTNs) for researchers in electronics, computer engineering, telecommunications and networking for those in academia and R&D in industrial sectors. Part I reviews the technology involved and the prospects for improving performance, including different types of DTN and their applications, such as satellite and deep-space communications and vehicular communications. Part II focuses on how the technology can be further improved, addressing topics, such as data bundling, opportunistic routing, reliable data streaming, and the potential for rapid selection and dissemination of urgent messages.
Opportunistic, delay-tolerant networks address the problem of intermittent connectivity in a network where there are long delays between sending and receiving messages, or there are periods of disconnection.
Front Matter Copyright Contributors Preface An introduction to delay and disruption tolerant networks (DTNs) Introduction Delay-tolerant network architecture DTN application scenarios DTN routing protocols Single-copy routing protocols Multiple-copy routing protocols Conclusion Acknowledgments References Delay-tolerant networks (DTNs) for satellite communications Introduction DTN architecture Bundle protocol DTN as an overlay Store-and-forward and custody option Fragmentation Intermittent links Bundle protocol security Bundle protocol implementations DTN2: The bundle protocol reference implementation ION: The bundle protocol implementation by NASA JPL GEO constellations Advantages and challenges of GEO constellations Possible countermeasures against GEO satellite impairments: Specialized protocols design and deployment challenges DTN as an extension of TCP-splitting PEPs Performance with fixed terminals: Continuous channels Ideal channel Congestion PER PER and congestion Performance with mobile terminals: Disruptive channels LEO constellations Advantages and challenges of LEO constellations Link intermittency and scheduled contacts Delay between data creation and availability: Multiple ground stations or GEO relays Routing with scheduled intermittent links LEO satellites for Earth observation: Multiple ground stations Experiment description Analysis of results LEO satellites for Earth observation: Ground stations and GEO relays Experiment description Analysis of results Conclusion Acknowledgments References Delay-tolerant networks (DTNs) for deep-space communications* Introduction Data communications in deep space Networking requirements for deep-space data Implementing a deep-space DTN solution A space-data DTN architecture Trusted DTN nodes Data Originators Security considerations Summary References Vehicular delay-tolerant networks Introduction Vehicular networks applications Vehicular communications Vehicular delay-tolerant networks Conclusion Acknowledgments References Delay-tolerant networks (DTNs) for underwater communications* Introduction Related work A framework for mobile underwater acoustic networks Delay-tolerant data dolphin (DDD) Adaptive routing An integrated data retrieval protocol An underwater convergence layer Data collection with multiple mobile actors The PASR protocol The TCBR protocol The resilient routing protocol The DUCS protocol The EDETA protocol The AURP protocol The utility-based protocol The AMCTD protocol The QDTR protocol The VOM-DTN protocol The DCT protocol The Ma-Sync protocol A contemporary view of underwater delay-tolerant networks Observations and suggestions A possible solution Future trends Conclusion References Delay-tolerant networks (DTNs) for emergency communications* Introduction Overview of proposed DTN solutions Wireless networking systems and architectures for emergency response WIISARD RESCUE SAFIRE AID-N Why delay-tolerant networks for emergency communication? Mobility models for emergency DTNs Postdisaster mobility model Enhanced postdisaster mobility model DistressNet Motivating scenario DistressNet applications Hardware and software architecture Routing protocols for emergency DTNs Intercontact routing for emergency DTNs Raven: Quality of service-aware routing for emergency DTNs Minimizing energy consumption in emergency DTNs Duty-cycling using mobility prediction Characterizing the performance-energy consumption tradeoff Conclusions and future trends Future trends References Environment friendly green data broadcasting in delay-tolerant opportunistic networks* Introduction Issues related to energy efficiency in OppNets Energy efficiency issues in geocasting Energy efficiency issues related to security in OppNets Related work Comparison of energy efficient routing protocols for OppNets Environment friendly green data broadcasting techniques Energy efficient PRoPHET routing protocol Energy efficient PRoWait routing protocol Energy efficient EDR routing protocol Energy efficient ATDTN routing protocol Geocasting techniques Floating content GeoOPP Expected visiting rate Geocasting in mobile partitioned networks Evaluation Simulation results Conclusion References Assessing the Bundle Protocol (BP) and alternative approaches to data bundling in delay-tolerant networks (DTN ... Introduction DTN architecture and Bundle Protocol implementation profiles DTN/BP-DINET profile DTN/BP-UK-DMC profile DTN/BP-N4C profile DTN/BP-SPINDLE profile Summary of DTN profiles Alternative approaches Haggle and opportunistic networking File-based space operations HTTP-based DTN architecture Information-centric networking Overall assessment Future trends Sources of further information and advice References Opportunistic routing in mobile ad hoc delay-tolerant networks (DTNs) Introduction Challenges Overview of multiple existing opportunistic routing protocols in mobile ad hoc networks Extremely opportunistic routing protocol (ExOR) Resilient opportunistic mesh routing (ROMER) Multipath code casting Coding opportunistically (COPE) Hybrid opportunistic routing protocols MORE O3: Optimized overlay-based opportunistic routing Opportunistic routing in multi-radio multichannel multihop wireless networks Social-aware opportunistic routing protocol, dLife Social group-based opportunistic routing Machine learning/artificial intelligence-based opportunistic routing Fog computing and opportunistic routing Combining on-demand opportunistic routing protocols Open research topics and future trends Sources of further information and advice References Reliable data streaming over delay-tolerant networks (DTNs)* Introduction Challenges for streaming support in DTNs Using on-the-fly coding to enable robust DTN streaming Evaluation of existing streaming proposals over a DTN network Relevant schemes Uncoded Erasure coding scheme (FEC (n,k)) Automatic repeat ReQuest Network settings Results Implementation discussion Choice of parameters Complexity Computation complexity Buffer complexity Conclusion References Further reading Rapid selection and dissemination of urgent messages over delay-tolerant networks (DTNs)* Introduction One-to-many communication in resource-constrained environments DTN multicast/broadcast Differentiation mechanisms Message differentiation in intermittently connected networks Random walk gossip (RWG) Random walk and handshake mechanism Message metadata Message activation mechanism RWG and message differentiation Random order Least informed first Earliest deadline first Least slack first Evaluation with vehicular mobility models Experimental setup Mobility Metrics Comparison of message differentiation mechanisms Detailed analysis of resulting latency distributions Discussion References Using social network analysis (SNA) to design socially aware network solutions in delay-tolerant networks (DTNs)* Introduction Social characteristics of delay-tolerant networks (DTNs) The social graph Measurement metrics Community structure Social-based human mobility models Socially aware data forwarding in DTNs Community-based forwarding Community-independent forwarding Social-based multicasting User selfishness and incentive schemes Conclusion References Performance issues and design choices in delay-tolerant network (DTN) algorithms and protocols* Introduction Performance metrics Protocol design Throughput and goodput Delivery delay Discovery latency Contact utilization Bundle rate Memory consumption Processing overhead Data flow Storage PDU encoding The curse of copying-I/O performance matters Problem statement Design advice: Central block storage mechanism Design advice: Hybrid storage Throughput Hop-by-hop throughput DTN protocol stack overhead Cross-layer approaches for reduced overhead Implementation details End-to-end throughput DTN capacity model DTN capacity Latency and queueing Contact utilization Throughput Scheduling Discovery latency and energy issues The need for discovery Contact utilization Energy usage for discovery Discovery using secondary radios Conclusions References Using emulation to validate applications on opportunistic networks Introduction Development challenges of opportunistic applications Dealing with opportunistic networks characterization Analytical modeling DTN simulators Traces collection DTN emulators and test beds Middlewares and real DTN stacks Dealing with opportunistic networks impact Reconciling perspectives Requirements for opportunistic network emulation Link layer requirements Connection-oriented vs. contact-oriented emulation Opportunistic emulation requirements Conclusions References The quest for a killer app for delay-tolerant networks (DTNs)* Introduction The quest for a problem Isolated and reduced-connectivity areas Sea applications Smart networking DTN as an enabling technology DTN implementations DTN tools and performance Technology adoption Conclusions and future trends Sources of further information and advice References Index A B C D E F G H I K L M N O P Q R S T U V W