دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Besim Ben-Nissan (Editor)
سری: Springer Series in Biomaterials Science and Engineering, Volume 2, 2014
ISBN (شابک) : 9783642539794
ناشر: Springer
سال نشر: 2014
تعداد صفحات: 559
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advances in Calcium Phosphate Biomaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در بیوموادهای کلسیم فسفات کلسیم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Tribute to Racquel......Page 8
Preface......Page 10
Acknowledgements......Page 14
Contents......Page 16
Contributors......Page 18
Abbreviations......Page 22
Chapter 1 Introduction to Synthetic and Biologic Apatites......Page 23
1.1 Introduction......Page 24
1.2 Biogenic Apatites......Page 25
1.3 Enamel, Dentin, and Bone Apatite......Page 26
1.4 Synthetic Apatites......Page 30
1.5 Synthetic Apatites as Bone-Substitute Materials......Page 31
1.8 Synthetic HAp and BCP as Scaffolds for Tissue Engineering......Page 34
References......Page 35
Chapter 2 Clinical Applications of Hydroxyapatite in Orthopedics......Page 40
2.2 Clinical Applications in Orthopedic Surgery: Interface Bioactive Bone Cement (IBBC)......Page 41
2.2.2.1 Histological Studies......Page 42
2.2.3.1 Surgical Technique......Page 44
2.2.3.2 Changes of IBBC Technique......Page 46
2.2.3.5 Group (3): (1986–1989, 22–25 Years After Surgery)......Page 47
2.2.4.1 Materials and Methods......Page 50
2.2.4.2 Results......Page 52
2.2.5 Discussion......Page 54
2.3.1 The First Generation......Page 58
2.3.2.1 Materials and Methods......Page 59
2.3.2.3 Results: X-Ray Evaluation......Page 60
2.3.3 The Second Generation (b) (1990–1992)......Page 61
2.3.4.2 Clinical Cases......Page 62
2.3.6.1 Retrieved Specimens Under Loaded Condition......Page 63
2.3.6.3 Discussion......Page 64
2.4.1 Bony Defect After Resection or Curettage of Bone Tumor......Page 66
2.4.1.2 Clinical Case 2: Juvenile Rheumatoid Arthritis (JRA)......Page 67
References......Page 68
3.1 Introduction......Page 71
3.2 Development of Bioactive Glasses......Page 72
3.2.2 Classes of Bioactivity......Page 74
3.2.2.1 Characterization of Bioactivity Reaction Stages......Page 75
3.3 Genetic Control of Bone Regeneration by Bioactive Glasses......Page 76
3.3.1 Confirmation of Genetic Control of Bone Regeneration......Page 78
3.3.2 Mechanisms of Genetic Control......Page 80
3.4 Tissue Engineering of Bone Regeneration......Page 83
3.4.1 Control of Vascularization of Tissues by Bioactive Glass Ionic Dissolution Products......Page 85
References......Page 87
Chapter 4 The Essential Role of Calcium Phosphate Bioceramics in Bone Regeneration......Page 91
4.1 Introduction......Page 92
4.2.2 Injectable Calcium Phosphate Bioceramics and Putties......Page 94
4.2.3.2 Dissolution......Page 97
4.2.3.3 Absorption......Page 98
4.2.4.2 Osteoconduction......Page 99
4.2.4.3 Osteogenicity and Osteoinduction......Page 100
4.3.1 Scaffolds and Cells Combination......Page 101
4.3.2 Scaffold for Drug Delivery......Page 110
4.4 Conclusions and Future Prospects for Calcium Phosphate Materials as Bone Substitutes......Page 111
References......Page 113
Chapter 5 Self-Assembly and Nano-layering of Apatitic Calcium Phosphates in Biomaterials......Page 117
5.1.1.1 Apatites or Apatite Family......Page 118
5.1.2.1 Bioactive Materials......Page 120
5.1.2.2 Zeroth Order Mechanism of In Vivo Apatite Layer Deposition on Classic Silicate Systems......Page 122
5.1.3.1 Apatite Coating on Materials Provided with a Bioactive Surface......Page 124
5.1.3.3 Apatite Coating on Polymeric Materials: Intermediate Layers and Liquid Phase Oxide Coating......Page 126
5.1.3.4 Direct Coating of Nanocrystallite Apatite on Polymeric Substrates......Page 129
5.1.4 Ionic Activity or Concentration of the Ions in SBF......Page 130
5.2.1.1 Nakanishi\'s Silica Gels with Mesopores and Micropores......Page 131
5.2.1.2 Attempts to Correlate the Silica Gel Structure and Apatite Deposition......Page 133
5.2.2 Apatite Layer Deposition on Ca-Containing Silica Gel Microparticles and Macrospheres......Page 134
5.2.3 Self-Catalysis of Aminosilanes and Apatite Deposition......Page 136
5.3.1 Exploring New Glass and Glass-Ceramics with Apatite-Forming Ability......Page 138
5.3.1.2 Crystallization Yielding Magnetic Glass-Ceramics......Page 140
5.3.2.1 Borate and Borosilicate Glasses to Dense and Hollow Apatite Spheres......Page 141
5.3.2.2 Conversion of Platelike Calcium Silicate Glasses to Apatite Rod Arrays......Page 142
5.3.3.2 Precipitation of Apatite in Glass-Ceramics as a Constituent......Page 143
5.4.1.1 Hydrated Oxide Gels......Page 144
5.4.1.2 Zirconia Gels and Those Prepared on Metal Substrates......Page 145
5.4.1.3 Niobium Oxide and Tantalum Oxide Gels......Page 146
5.4.2.1 Chemical Procedure to Form an Intermediate Layer and Direct Coating of Apatite......Page 147
5.4.2.2 Physical Procedure to Assist the Formation of an Apatite Layer on ZrO2 Ceramics......Page 148
5.4.3.1 Titania Ceramics and Gels......Page 149
5.4.3.2 Titania Gels and Apatite Deposition In Vitro......Page 151
5.4.3.3 Apatite-Depositing Ability Depends on the Sol-Gel Routes......Page 156
5.4.3.4 In Vivo Responses of Sol-Gel-Derived Titania Gels......Page 157
5.4.3.5 Hydrolysis–Condensation of Some Inorganic Salts of Titanium......Page 158
5.4.4.1 NaOH Treatment (AL–H Treatment; Kyoto U Procedure)......Page 159
5.4.4.2 Two-Step Procedure: Acid and Alkali (Chubu–Kyoto Scheme) or Acid and Heating (Leiden Scheme)......Page 161
5.4.4.3 Electrochemical (Anode) Oxidation of Ti and Alloys......Page 163
5.4.4.4 Hydrogen Peroxide Oxidation of Ti......Page 166
5.4.4.5 GRAPE® Technology: Air Oxidation of Grooved Implants......Page 167
5.4.5 Preferred Plain of Apatite Growth......Page 169
5.5.2.1 Silicate Hybrids......Page 170
5.5.3 Biodegradable Hybrids: Gelatin–GPTMS Hybrids......Page 171
5.5.4 Biodegradable Hybrids: Chitosan–GPTMS Hybrids......Page 173
5.6 Conclusive Remarks......Page 175
References......Page 176
Chapter 6 Signal Molecule-Calcium Phosphate Composites: Novel Approaches to Controlling Cellular and/or Biological Reactions and Functions......Page 190
6.2.1 Formation of Signal Molecule-CaP Composite Layers......Page 191
6.2.2 Material Properties of Signal Molecule-CaP Composite Layers......Page 194
6.3.1 Bone Regeneration......Page 196
6.3.2 Soft Tissue Regeneration......Page 197
6.4.1 Gene Delivery: An Introduction......Page 199
6.4.2 Gene Delivery Systems Using CaP Composite Layers......Page 200
6.4.3 Control of Gene Delivery......Page 202
6.4.4 Tissue Engineering Applications......Page 205
6.5.1 Adjuvants for Cancer Immunotherapy......Page 207
6.5.2 Infection Control......Page 208
6.5.3 Prevention of Thrombogenesis......Page 209
References......Page 210
7.1 Introduction......Page 217
7.2 Setting Reaction of CPC......Page 218
7.3 Regulations in Setting Reaction......Page 223
7.4 Regulations in Porosity......Page 230
7.5 Regulations in Anti-washout Property......Page 234
7.6 Regulations in Injectability......Page 235
7.7 Difference Between Apatite Cements and Brushite Cements......Page 237
7.8 Application for Local Drug Delivery Devices......Page 238
7.9 Currently Available Calcium Phosphate Cement......Page 239
References......Page 241
Chapter 8 Characterization of Calcium Phosphates Using Vibrational Spectroscopies......Page 246
8.2.1 Theoretical Considerations......Page 247
8.2.2 Spectra of Well-Defined Stoichiometric Calcium Phosphates......Page 250
8.3 Methods and Techniques......Page 253
8.3.1 Isotopic Substitutions......Page 254
8.3.3 Data Computing......Page 257
8.4.1 Substituted Apatites and Their Solid Solutions......Page 258
8.4.1.1 Cation-Substituted Stoichiometric Apatites......Page 259
8.4.1.2 Substituted Anions and Nonstoichiometric Apatites......Page 261
8.5.1 Surface Characteristics of Biomimetic Nanocrystalline Apatites......Page 263
8.5.2.1 Surface Carbonate in Biomimetic Nanocrystalline Apatites......Page 265
8.5.2.2 Maturation Process......Page 266
8.6.1 Plasma Sprayed Coating......Page 268
8.6.2 Setting Reactions of Calcium Phosphate Cements......Page 270
8.6.4 Near Infrared Spectroscopy......Page 272
8.6.5 Pressure Effects and Residual Strains......Page 275
8.6.7 Maturity and Crystallinity of Bone Mineral......Page 277
References......Page 279
Chapter 9 A Review of Hydroxyapatite Coatings Manufactured by Thermal Spray......Page 284
9.1.2 Hydroxyapatite......Page 285
9.2.1.1 Structure and Phase Diagram......Page 287
9.2.1.2 Comparison of Hydroxyapatite and Bone......Page 289
9.2.1.3 Dissolution Behaviour......Page 290
9.2.1.4 Thermal Behaviour......Page 291
9.2.2 Hydroxyapatite Powder......Page 292
9.3 Human Bone......Page 293
9.3.1 The Composite Structure of Bone......Page 294
9.3.2 Bone Modelling and Remodelling......Page 295
9.4.2 Manufacturing Processes......Page 296
9.5 Thermal Spraying......Page 298
9.5.1 Plasma Spray Operation......Page 299
9.5.2 Plasma Spray Process Parameters......Page 301
9.5.3 High-Velocity Oxygen-Fuel Spraying......Page 303
9.5.4 Coating Phases......Page 304
9.5.5 Design of Experiment (DOE) Methods......Page 308
9.6.1 Optimisation of Hydroxyapatite Coatings......Page 311
9.6.2 Thermo-physical and Mechanical Properties......Page 313
9.6.4 Phase Arrangement......Page 318
9.6.5 In Vitro Behaviour......Page 320
9.6.6 In Vivo Behaviour......Page 327
9.6.7 Optimisation of Hydroxyapatite Coating Characteristics......Page 329
9.7.1 In Vivo Response......Page 330
9.7.2 Modelling and Remodelling Processes......Page 331
9.7.3 Interactions at the Implant–Coating Interface......Page 333
9.7.4 Engineering Models for Coating–Implant Interactions......Page 336
9.8 Concluding Remarks......Page 337
References......Page 338
Chapter 10 Bioactive Composites Reinforced with Inorganic Glasses and Glass–Ceramics for Tissue Engineering Applications......Page 347
10.1 Introduction......Page 348
10.2 Biocompatibility and Bioactivity in Bone Tissue Engineering......Page 349
10.3.1 Bioactive Inorganic Particles and Their Synthesis......Page 350
10.3.1.1 Melt-Based Approach......Page 351
10.3.1.2 Sol–Gel Approach......Page 352
10.3.2 Natural-Based Polymeric Phases/Composites and Their Processing......Page 355
10.3.2.2 Wet-Spinning Approaches......Page 356
10.3.2.3 Rapid Prototyping......Page 357
10.4.1 Injectable Systems......Page 358
10.4.2 3D Scaffolds......Page 359
10.4.3 Membranes and Layer-by-Layer Structures......Page 361
References......Page 363
Chapter 11 Development of Skeletal Drug Delivery System Based on Apatite/Collagen Composite Cement......Page 370
11.2.1 Physicochemical Prosperities of the AC......Page 371
11.2.2 Biodegradation of the AC in Rats......Page 374
11.3.1 Therapeutic Effect of Drug Delivery System of the AC on Bone Mass in the Rats......Page 376
11.4 Skeletal Bone Cell Scaffold Based on Apatite/Collagen Composite Cements......Page 378
11.4.1 Biodegradation of Scaffold Based on Apatite/Collagen Composite Cements with Interconnective Macropores in Rats......Page 379
11.5.1 Controlled In Vitro Drug Release from Skeletal Bone Cell Scaffold by Interconnective Macropores......Page 381
11.5.2 In Vitro Bone Cell Activity Responsive Drug Release from Biodegradable Apatite/Collagen Bone Cell Scaffold with Interconnective Macropores......Page 383
References......Page 386
Chapter 12 Nanocrystalline Apatite-Based Biomaterials and Stem Cells in Orthopaedics......Page 388
12.2 Production of Nanocrystalline Apatite-Based Biomaterials......Page 389
12.2.1 Combining with Trace Elements......Page 391
12.2.2.2 Porosity Test......Page 392
12.3 Bone Structure and Function......Page 393
12.4 Stem Cells and Cell Response to Nanocrystalline Apatite-Based Biomaterials......Page 397
12.5 Tissue Response to Nanocrystalline Apatite-Based Biomaterials......Page 399
12.6 Growth Factor and Drug Delivery......Page 401
12.7 Implant Surface Coatings......Page 402
References......Page 403
Chapter 13 Marine Structures as Templates for Biomaterials......Page 406
13.1 Introduction......Page 407
13.2 Biomimetics and Evolution......Page 408
13.3 Biomaterial Synthesis and Production......Page 409
13.5 Marine Skeletons......Page 411
13.6 Marine Shells (Nacre)......Page 412
13.7 Marine Skeletal Proteins in Regenerative Medicine......Page 414
13.7.1 Marine Sponge Skeletons......Page 415
13.7.2 Echinoderm Skeletal Elements......Page 417
13.7.3 Coral Skeletons......Page 419
13.9 Foraminifera and Drug Delivery......Page 421
13.10 Stem Cell Regulation......Page 424
13.11 Concluding Remarks......Page 425
References......Page 426
Chapter 14 Calcium Phosphate Derived from Foraminifera Structures as Drug Delivery Systems and for Bone Tissue Engineering......Page 430
14.1 An Introduction to Drug Delivery Systems......Page 431
14.1.2 Calcium Phosphate Materials for Drug Delivery Systems......Page 432
14.2.1 Compositional Properties of Calcareous Exoskeletons......Page 433
14.2.3 Producing Calcium Phosphates from Calcareous Exoskeletons......Page 434
14.3 Drug Delivery Systems Based on Calcareous-Derived Calcium Phosphates......Page 435
14.3.1 Controlled Release of Bone Stimulatory Drug: Simvastatin......Page 437
14.3.2 Carrier for Antibiotic (Gentamicin) Against Methicillin-Resistant Staphylococcus aureus (MRSA)......Page 438
14.3.3 Synthetic Modification of β-TCP with Zinc......Page 439
14.3.4 Zn-TCP as a Drug Delivery System for Treatment of Osteoporosis......Page 441
14.3.5.1 Zn-TCP as Bone Filler Material for Defect Repair......Page 442
14.3.5.2 Zn-TCP as Bone Grafts for Bone Augmentation Procedures......Page 444
14.4 Conclusion and Future Developments......Page 445
References......Page 446
Chapter 15 History of Calcium Phosphates in Regenerative Medicine......Page 449
15.1 Introduction......Page 450
15.2 General Definitions, Major Problems, and Limitations......Page 452
15.3 Investigations and Knowledge at the “Pre-calcium Orthophosphate” Time......Page 453
15.4.1 In the Eighteenth Century......Page 454
15.4.2 In the Nineteenth Century......Page 457
15.4.3 From 1900 till 1950......Page 470
15.5.1 Artificial Grafts in the Nineteenth Century and Before......Page 474
15.5.2 The Twentieth Century......Page 479
15.6 Conclusions......Page 482
References......Page 483
16.1 Introduction......Page 498
16.2 Calcium Phosphates for Drug, Gene, and Protein Delivery......Page 499
16.2.1 Drug Delivery......Page 500
16.2.2 Gene Delivery......Page 503
16.2.3 Protein Delivery......Page 504
16.3.1 Carbon Nanotubes......Page 505
16.3.2 Collagen......Page 506
16.3.3 Titanium Dioxide (TiO2)......Page 507
16.4 Advances in Calcium Phosphate Scaffolds for Tissue Engineering......Page 508
16.4.1 Calcium Phosphate Nanocoated Coralline Apatite......Page 509
16.4.2 Liposomes and Calcium Phosphates......Page 510
16.4.3 Chitosan and Calcium Phosphate Composites......Page 513
16.4.4 Synthetic Polymer and Calcium Phosphate Composites......Page 514
16.5 Concluding Remarks......Page 516
References......Page 517
17.1 Introduction......Page 523
17.2.1 Structure of Enamel......Page 525
17.2.2 Structure of Dentin......Page 528
17.2.3 Structure of Cementum......Page 529
17.3 Mechanical Properties of Enamel......Page 530
17.3.1.1 Hardness and Elastic Modulus......Page 531
17.3.1.2 Stress–Strain Relationship of Enamel......Page 532
17.3.1.3 Indentation Creep Behaviour......Page 533
17.3.1.4 Energy Absorption of Enamel......Page 534
17.3.2 Mechanical Properties of Heated and Ethanol-Treated Enamel......Page 536
17.3.2.1 Hardness and Elastic Modulus......Page 537
17.3.2.2 Indentation Creep Behaviour......Page 539
17.3.3 Mechanical Properties of Bleached Enamel......Page 541
17.3.3.2 Indentation Creep Behaviour......Page 542
17.4.1 Mechanical Properties of Sound Dentin......Page 545
17.4.2.1 Hardness and Elastic Modulus......Page 546
17.4.2.3 Indentation Energy Absorption......Page 548
17.4.3 Mechanical Properties of Proteoglycan-Digested Dentin......Page 551
17.5 Mechanical Properties of Cementum......Page 554
17.6 Conclusion......Page 555
References......Page 556