دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mohamed H. Doweidar (editor)
سری:
ISBN (شابک) : 0128163909, 9780128163900
ناشر: Academic Pr
سال نشر: 2019
تعداد صفحات: 420
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advances in Biomechanics and Tissue Regeneration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در بیومکانیک و بازسازی بافت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیشرفتها در بیومکانیک و بازسازی بافتگستره وسیعی از پیشرفتها و پیشرفتهای اخیر در زمینههای بیومکانیک و بازسازی بافت را پوشش میدهد. این شامل شبیه سازی محاسباتی، بافت های نرم، میکروسیال، سیستم قلبی عروقی، روش های تجربی در بیومکانیک، مکانیک زیست شناسی و بازسازی بافت است. تئوری ها و کاربردهای پیشرفته ارائه شده است و این کتاب را برای هر کسی که تصمیم می گیرد تحقیقات آینده خود را در این زمینه به کدام سمت ببرد ایده آل می کند. علاوه بر این، برای همه کسانی که در حال کاوش در زمینه های جدید هستند یا در حال حاضر روی یک پروژه بین رشته ای در بیومکانیک بافت کار می کنند ایده آل است.
Advances in Biomechanics and Tissue Regeneration covers a wide range of recent development and advances in the fields of biomechanics and tissue regeneration. It includes computational simulation, soft tissues, microfluidics, the cardiovascular system, experimental methods in biomechanics, mechanobiology and tissue regeneration. The state-of-the-art, theories and application are presented, making this book ideal for anyone who is deciding which direction to take their future research in this field. In addition, it is ideal for everyone who is exploring new fields or currently working on an interdisciplinary project in tissue biomechanics.
Cover ADVANCES IN BIOMECHANICS AND TISSUE REGENERATION Copyright Contributors Part I: Biomechanics 1 Personalized Corneal Biomechanics Introduction Eye Anatomy Patient-Specific Geometry Corneal Surface Reconstruction Corneal Surface Finite Element Model Stress-Free Configuration of the Eyeball: Reference Geometry Patient-Specific Material Behavior Material Model Monte Carlo Simulation Neighborhood-Based Protocol (K-nn Search) Validation With Clinical Data Surgery Simulation Simulation of Refractive Surgery: Astigmatic Keratotomy Simulation of ICRS Implantation Conclusions Acknowledgments References Further Reading 2 Biomechanics of the Vestibular System: A Numerical Simulation Introduction Diagnosing Vestibular Dysfunctions Numerical Methods Applied to Human Morphology Biomechanical Model of the Semicircular Ducts Conclusions Acknowledgments References 3 Design, Simulation, and Experimentation of Colonic Stents Introduction Ideal Mechanical Properties for Colonic Stents Mechanical Parameters Commercial Stents Self-Expanding Stainless Steel Stents Wallstent (Fig. 3.3) Gianturco Stent (Fig. 3.4) Song and Choo-Z-Modified Gianturco Stents (Fig. 3.5) Self-Expanding Nitinol Stents Esophacoil Stent (Fig. 3.6) Ultraflex Stent (Fig. 3.7) Choo Stent (Figs. 3.8 and 3.9) Mechanical Behavior Resistance Mechanisms Helicoidal Spring Kinematics Relations Static Equilibrium Behavior Equations Radial Spring Kinematics Relations Static Equilibrium Behavior Equations Radial Multiple Arcs Spring Kinematics Relations Static Equilibrium Behavior Equations Design Methodology Stent Material Stent Geometry Finite Element Model Cell Model Simulation Methodology Shaping Process Surgical Handling: Crimping and Releasing From Catheter Peristaltic Motion Manufacturing and Animal Experimentation Material Stent Manufacturing Process Instrumental Adaptation Test Animal Experimentation Stenosis Generation Insertion Process Customized Parametric Design Conclusions References 4 Mechanical and Microstructural Behavior of Vascular Tissue Introduction Microstructural Modeling of the Carotid Artery Experimental Findings for the Porcine Carotid Artery Histological Analysis Uniaxial Mechanical Test Material Models for the Carotid Artery Phenomenological Model Cross-Linked Phenomenological Model Microstructural Model Cross-Linked Microstructural Model Results on Modeling the Porcine Carotid Artery Mechanical Characterization and Modeling of the Aorta Experimental Findings for the Porcine Aorta Biaxial Mechanical Test Histology and Confocal Laser Scanning Microscopy Imaging Material Models for the Porcine Aorta Phenomenological Model Structural Model Microfiber Model Results on Modeling the Porcine Carotid Artery Conclusions Acknowledgments References 5 Impact of the Fluid-Structure Interaction Modeling on the Human Vessel Hemodynamics Clinical Background Finite Element Modeling of the Human Blood Vessels Image-Based Geometrical Reconstruction Generation of the Computational Grids Boundary Conditions Dilemma Aortic and Carotid Inflow The Impedance-Based Method The Vascular Fractal Network Computation of the Vascular Impedance Inflow and Outflow Conditions for the Aortic and Carotid Hemodynamics Boundary Conditions for the Solid Domain Blood Flow Modeling Quantification of Hemodynamic Indices Structural Modeling Aortic Structural Modeling Carotid Structural Modeling FSI Coupling and Numerical Modeling Results Arterial Hemodynamics Instantaneous Wall Shear Stress Comparison Time Average Wall Shear Stress Comparison Arterial Compliance Limitations Conclusion Acknowledgments References 6 Review of the Essential Roles of SMCs in ATAA Biomechanics Introduction Basics of Aortic Wall Mechanics and Passive Biomechanical Role of SMCs Composition of Arteries The Extracellular Matrix A Multilayered Wall Structure Basics of Aortic Biomechanics Passive Mechanics of the Aortic Tissue Multilayer Model of Stress Distribution Across the Wall Active Biomechanical Behavior Smooth Muscle Cells SMC Structure Principle of SMC Contractility Intracellular Connections Multiscale Mechanics of SMC Contraction Subcellular Behavior (Sub)cellular Models for the SMC Effect of SMC Contraction on the Distribution of Stresses Across the Aortic Wall Mechanosensing and Mechanotransduction Mechanosensing The Key Role of SMCs in ATAAs SMC Mechanotransduction Mechanical Homeostasis in the Aortic Wall Consequences for Aortic Tissue Toward an Adaptation of SMCs in ATAAs? Summary and Future Directions Acknowledgments References 7 Multiscale Numerical Simulation of Heart Electrophysiology Cardiac Electrophysiology: Introduction Equations That Govern the Electrical Activity of the Heart Governing Equations Bidomain Model Monodomain Model Myocardium Conductance Action Potential Models Structure of an Action Potential Model The Cell Membrane The Nernst Equation Goldman-Hodgkin-Katz Equation Gates Ionic Channels The Ten Tusscher Action Potential Model Numerical Solution of the Electric Activity of the Heart Spatial-Temporal Discretization Integration of the Mass Matrix Vulnerability in Regionally Ischemic Human Heart: Effect of the Extracellular Potassium Concentration Methods Mathematical Model Model of Acute Ischemia Action Potential Model Under Ischemic Conditions Heart Model Electrophysiological Heterogeneities Under Acute Ischemia Stimulation Protocol Numerical Simulations Results Discussion and Conclusions Acknowledgments References Further Reading 8 Towards the Real-Time Modeling of the Heart Introduction Cardiac Mechanics and Model Passive Stress Active Stress Windkessel Model Reduced Order Method Proper Orthogonal Decomposition POD With Interpolation Parametric PODI Temporal PODI Whole Heart Cycle Modeling Time Standardization Process PODI Usage and Database Construction Numerical Examples Human Left Ventricle Example Idealized Biventricle Example Patient-Specific Cardiac PODI Computation Degrees of Freedom Standardization Method Cube Template Standardization Heart Template Standardization Numerical Examples Cube Template Standardization Coarse Template Discretization Refined Template Discretization Heart Template Standardization Coarse Template Discretization Refined Template Discretization Conclusion Appendix Moving Least Square Approximation Acknowledgments References 9 Computational Musculoskeletal Biomechanics of the Knee Joint Introduction Methods Passive Tissues Cartilage Ligaments Meniscus Knee Joint Passive Finite Element (FE) Model Lower Extremity Musculoskeletal (MS) Model Equilibrium Applications: Boundary Conditions and Loading Joint Stability Analyses Validation Future Directions Acknowledgments References 10 Determination of the Anisotropic Mechanical Properties of Bone Tissue Using a Homogenization Technique Combined With Meshl ... Introduction Homogenization Technique Fabric Tensor Morphologic-Based Method Phenomenological Material Law Method Validation Scale Study Rotation Study Structural Application Conclusions Acknowledgments References 11 Analysis of the Biomechanical Behavior of Osteosynthesis Based on Intramedullary Nails in Femur Fractures Introduction Methodology of Simulation Types of Fractures and Osteosynthesis Results Conclusions Acknowledgments References 12 Biomechanical Study in the Calcaneus Bone After an Autologous Bone Harvest Introduction Methods Results Displacements Varying the Talus Load and Constant Achilles Tendon Load Based on the Amount of Bone Extraction Displacements Varying Achilles Tendon Load Based on the Amount of Bone Extraction Discussion Conclusion Acknowledgments References Part II: Mechanobiology and Tissue Regeneration 13 Multidimensional Biomechanics Approaches Though Electrically and Magnetically Active Microenvironments Relevance of Electric and Mechanical Clues for Tissue Engineering Bone Collagen and Other Piezoelectric Tissues Cardiac Tissue Nerve Tissues Principles for Electric and Mechanical Clues Electric and Electromechanical Clues Magnetic, Magnetomechanic, and Magnetoelectric Materials Conclusions Acknowledgments References 14 Using 3-D Printing and Bioprinting Technologies for Personalized Implants Introduction Bioprinting Bioprinting Techniques Materials Natural Hydrogels Synthetic Hydrogels 3D Printing of Personalized Silicone Implant Soft 3-D Implant Printing: Example of Silicone Silicone ORL Implant and the Need of Personalization Different Types of Stenosis of the Respiratory Tract Management of Stenosis: Development of Silicone Soft Implants Complications Related to Standard Prostheses Benefits of 3D Printing Different Steps to Print Personalized Medical Implant 3-D Printing of Silicone for Healthcare Technology and Challenge Mono-Component Silicone Bi-Component Silicone Rheological Properties of Printable Silicone Rheological Testing and Parameters Conclusion 14.1IntroductionThe last two centuries have seen a steady increase in average life expectancy all around the world, particular References Further Reading 15 Computational Simulation of Cell Behavior for Tissue Regeneration Introduction Methodology Mechanotaxis Traction Force Protrusion Force Drag Force Chemotaxis and Thermotaxis Electrotaxis Force Equilibrium Discretization of the Cell and ECM Domains Cell Migration, Considering Constant Cell Shape Cell Migration, Considering Cell Shape Change and Remodeling MSC Differentiation and Apoptosis Cell Proliferation Numerical Implementation and Applications Effect of ECM Depth on Cell Mechanosensing and Migration Cell Behavior Within a Multisignaling ECM Multicell Migration Within a Multisignaling ECM Single Cell Morphology Within a Multisignaling ECM Cell Differentiation and Proliferation Due to Mechanotaxis Conclusions Acknowledgments References 16 On the Simulation of Organ-on-Chip Cell Processes: Application to an In Vitro Model of Glioblastoma Evolution Introduction Problem Description Experiment Description: Materials and Methods Mathematical Framework Balance Equations for Cell Populations and Species Cell Populations Species Concentrations Physical Models for Fluxes and Sources Source Terms in Cell Population Equations Proliferation Differentiation Migration Terms in Cell Population Equations Diffusion Mechanotaxis Chemotaxis Electrotaxis Thermotaxis Source Terms and Diffusion for Chemical Species Diffusion ECM Remodeling Coupling Implementation 3D Finite Element Implementation Weak Form Spatial Discretization Cell Populations Chemical Species Compact Form Time Integration Forward Euler method Backward Euler Combined With the Broyden Method 1D Finite Element Implementation Unidimensional Equations Weak Form Spatial Discretization Time Integration Some Applications of Interest Reproducing In Silico Measurements of In Vitro Cell Cultures in Microfluidic Devices Model and Parameters Boundary Conditions Initial Conditions Results and Discussion In Silico Design and Quantification of Experiments in Microfluidic Devices Model and Parameters Geometry Boundary Conditions Initial Conditions Results and Discussion Conclusions Acknowledgments References 17 Skin Mechanobiology and Biomechanics: From Homeostasis to Wound Healing Introduction Biomechanics in the Context of the Skin Measuring Skin Mechanical Properties Tensile Testing Compression Testing Indentation Testing Suction Testing Skin Mechanobiology Mechanosensing and Mechanotransduction Effect of Forces Over Fibroblasts and Keratinocytes Biomechanics and Mechanobiology in the Context of Skin Wound Healing Final Remarks References 18 Cartilage Regeneration and Tissue Engineering Cartilage Tissue [1, 2] Cartilage Cells [1] Hyaline Cartilage Extracellular Matrix [1, 2, 10] ECM Components ECM Territories Synovial Joints Cartilage ECM Turnover [2, 10] Articular Cartilage Aging and Senescence Cartilage Repair and Osteoarthritis Articular Cartilage and Tissue Engineering Cells Cartilage-Derived Cells Mesenchymal Stem Cells Bone Marrow Adipose Tissue Umbilical Cord Dental Pulp Peripheral Blood Synovium Scaffolds Natural Materials Protein-Based Scaffolds Polysaccharide-Based Scaffolds Synthetic Materials Growth Factors Acknowledgments References 19 Impact of Mechanobiological Perturbation in Cartilage Tissue Engineering Introduction Mechanotransduction of Mechanical Signals Influence of Extracellular Cues Stiffness Cell Shape and Dynamic Morphological Changes Substrate Topography Intracellular Mechanotransduction Effect of External Mechanical Signals Compression Shear Stress Fluid Flow Mechanotransduction of External Mechanical Stimulation Future Directions References 20 Biomechanical Analysis of Bone Tissue After Insertion of Dental Implants Using Meshless Methods: Stress Analysis and Osseo ... Introduction Computational Model Single Dental Implant Boundary Conditions Algorithm Description Numerical Discretization Mechanical Analysis Bone Remodeling Computational Analysis of Bone Remodeling Model 1 Model 2 Conclusions Acknowledgments References 21 Numerical Assessment of Bone Tissue Remodeling of a Proximal Femur After Insertion of a Femoral Implant Using an Interpola ... Introduction Bone Remodeling Model Preprocessing Mechanical Analysis Remodeling Points Phenomenological Law Bone Remodeling After THA Computational Model Prediction of Bone Remodeling Conclusions Acknowledgments References Index A B C D E F G H I J K L M N O P R S T U V W Y Z Back Cover