دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ana Cristina Bicharra Garcia, Mariza Ferro, Julio Cesar Rodríguez Ribón سری: Lecture Notes in Computer Science, 13788 ISBN (شابک) : 3031224183, 9783031224188 ناشر: Springer سال نشر: 2023 تعداد صفحات: 421 [422] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 41 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advances in Artificial Intelligence – IBERAMIA 2022: 17th Ibero-American Conference on AI, Cartagena de Indias, Colombia, November 23–25, 2022, Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در هوش مصنوعی - IBERAMIA 2022: هفدهمین کنفرانس ایبرو-آمریکایی در مورد هوش مصنوعی، Cartagena de Indias، کلمبیا، 23 تا 25 نوامبر 2022، مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری هفدهامین کنفرانس ایبرو-آمریکایی در مورد هوش مصنوعی، IBERAMIA 2022 است که در Cartagena de Indias، کلمبیا، در نوامبر 2022.
33 مقاله کامل و 4 مقاله کوتاه ارائه شده با دقت بررسی و از 67 مورد ارسالی انتخاب شدند. مقالات در بخش های موضوعی زیر سازماندهی شده اند: کاربردهای هوش مصنوعی. اخلاق و شهر هوشمند؛ هوش مصنوعی سبز و پایدار؛ فراگیری ماشین؛ پردازش زبان طبیعی؛ روباتیک و بینایی کامپیوتر؛ شبیه سازی و پیش بینی.
This book constitutes the refereed proceedings of the 17th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2022, held in Cartagena de Indias, Colombia, in November 2022.
The 33 full and 4 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in the following topical sections: applications of AI; ethics and smart city; green and sustainable AI; machine learning; natural language processing; robotics and computer vision; simulation and forecasting.
Preface Organization Contents Applications of AI Gait Patterns Coded as Riemannian Mean Covariances to Support Parkinson's Disease Diagnosis 1 Introduction 2 Proposed Approach: The Covariance Mean as Parkinsonian Descriptor 2.1 Temporal Gait Representation and Deep Features 2.2 Video Sequences and Riemannian Manifold 2.3 Geometric Mean Descriptor on the Riemannian Manifold 2.4 Classification and Low-Dimensional Visualization 2.5 Experimental Setup 3 Evaluation and Results 4 Discussion and Conclusions References Forroset: A Multipurpose Dataset of Brazilian Forró Music 1 Introduction 2 Related Forró Datasets 3 Forroset Creation 3.1 Spotify Data 3.2 Preprocessing Data 3.3 Vagalume Lyrics 3.4 Getting MP3 Files 3.5 Ethics of Data Collection 3.6 FAIR Principles Implementation 4 Data Details 4.1 General Information 4.2 Spotify Features 4.3 Spotify Audio Analysis 4.4 Filters and Organization 4.5 Lyrics 4.6 MP3 Files 5 Forroset's Potential Applications 5.1 Forró Industry 5.2 Dance Teaching 5.3 Music Information Retrieval 6 Conclusions 7 Availability References Impact of ECG Signal Preprocessing and Filtering on Arrhythmia Classification Using Machine Learning Techniques 1 Introduction 2 Methodology 2.1 MIT-BIH Arrhythmia Database 2.2 Preprocessing 2.3 ECG Beat Segmentation 2.4 Feature Extraction 2.5 Classification 2.6 Experimental Design 3 Results 3.1 Discussions 4 Conclusions References Learning Automata Using Dimensional Reduction 1 Introduction 2 Definitions 3 Transcription-Evaluation Framework 4 Experimental Results 4.1 Datasets 4.2 Learning Setup 4.3 One-to-One Encoding of Window Contents 4.4 Many-to-Int Encoding of Window Contents 4.5 Application on MNIST Dataset 5 Conclusion References Modelling Urban Traffic Configuration with the Influence of Human Factors 1 Introduction 2 Model Formulation Using Queuing Theory 3 Experimentation 4 Conclusions References Applying Anomaly Detection Models in Wastewater Management: A Case Study of Nitrates Concentration in the Effluent 1 Introduction 2 State of the Art 3 Material and Methods 3.1 Data Collection 3.2 Data Exploration 3.3 Data Preparation 3.4 Evaluation Metrics 3.5 Isolation Forests 3.6 LSTM-Autoencoder 4 Experiments 5 Results and Discussion 6 Conclusions References Optimal Architecture Discovery for Physics-Informed Neural Networks 1 Introduction 2 Physics-Informed Neural Networks (PINNs) 3 Evolutionary Multi-objective Optimization 4 Experiments 4.1 Burgers Equation 4.2 Wave Equation 5 Conclusions References An AI–Based Approach for Failure Prediction in Transmission Lines Components 1 Introduction 2 Transmission Lines Components and Common Failures 3 Fundamentals 3.1 Bayesian Networks 3.2 Recurrent Networks 4 Failure Prediction of Transmission Lines Components 4.1 Failure Model Using Bayesian Networks 4.2 Degradation Model Using a LSTM Recurrent Network 5 Experimental Results 5.1 Evaluation of the Probabilistic Failure Model 5.2 Evaluation of Lifetime Estimation with LSTM Models 6 Conclusions and Future Work References Ethics and Smart City Crowdsensing on Smart Cities: A Systematic Review 1 Introduction 2 Methodology 3 Results and Discussion 4 Conclusion References Sentiment Gradient, An Enhancement to the Truth, Lies and Sarcasm Detection 1 Introduction 2 Related Works 3 Sentiment Gradient 4 Dataset 5 Experiment 5.1 Machine Learning Algorithms and Hyperparameters 5.2 Study Case in Twitter 6 Experiment Results Discussion 7 Conclusions References Green and Sustainable AI Selection of Acoustic Features for the Discrimination Between Highly and Moderately Transformed Colombian Soundscapes 1 Introduction 2 Background and Methods 2.1 Acoustic Features 2.2 Feature Selection Methods 3 Results and Discussion 3.1 Individual Feature Selection 3.2 Selection of the Best Pair of Acoustic Features 3.3 Selection of the Best Triple of Acoustic Features 3.4 Selection of the Best Subset of Acoustic Features 4 Conclusion References A Multi-objective Hyperparameter Optimization for Machine Learning Using Genetic Algorithms: A Green AI Centric Approach 1 Introduction 2 Background and Related Works 3 Proposal of Multi-objective Optimization with GA 4 Methodology and Experimental Setup 5 Results and Discussion 6 Final Considerations References Machine Learning Evolving Node Embeddings for Dynamic Exploration of Network Topologies 1 Introduction 2 Related Work 3 Evolving Node Embedding 4 Experimental Analysis 4.1 Node Classification Task 5 Final Remarks References Fast Kernel Density Estimation with Density Matrices and Random Fourier Features 1 Introduction 2 Background and Related Work 2.1 Kernel Density Estimation 2.2 Random Fourier Features 2.3 Quantum Kernel Density Estimation Approximation 3 KDE Approximation Methods 4 Experimental Evaluation 5 Conclusion References A Novel Methodology for Engine Diagnosis Based on Multiscale Permutation Entropy and Machine Learning Using Non-intrusive Data 1 Introduction 2 Materials and Methods 2.1 Multiscale Permutation Entropy 2.2 Variance Relevance Analysis 2.3 K Nearest Neighbors 2.4 Internal Combustion Engine 2.5 Data Base 3 Results 4 Conclusion References Markers of Exposure to the Colombian Armed Conflict: A Machine Learning Approach 1 Introduction 2 Materials and Methods 2.1 Materials 2.2 Methods 3 Results 4 Conclusions References Model Compression for Deep Reinforcement Learning Through Mutual Information 1 Introduction 2 Background 2.1 Deep Reinforcement Learning 2.2 Entropy and Mutual Information 3 Related Work 4 Model Compression for Deep Reinforcement Learning 4.1 Ranking the Units 4.2 Model Compression 5 Experimental Results 6 Conclusions and Future Work References Early Detection of Abandonment Signs in Interactive Novels with a Randomized Forest Classifier 1 Introduction 2 Related Work 3 Methodology 4 Results 4.1 Sample 4.2 Data Description 4.3 Model Construction 4.4 Model Validation 5 Discussion 6 Conclusions References Insights from Deep Learning in Feature Extraction for Non-supervised Multi-species Identification in Soundscapes 1 Introduction 2 Materials and Methods 2.1 Materials 2.2 Multi-species Identification Methodology 2.3 Feature Extraction for Multi-species Identification 2.4 KiwiNet as a Supervised Classifier 2.5 Clustering for Multi-species Identification 2.6 Evaluation Metrics 3 Experimental Results and Discussion 4 Conclusions and Future Work References Evaluation of Transfer Learning to Improve Arrhythmia Classification for a Small ECG Database 1 Introduction 2 Related Work 2.1 Public Database 2.2 ECG Classification 3 Methods 3.1 Databases 3.2 1D-CNN Architecture Model 3.3 Transfer Learning Method 4 Results 5 Discussion 6 Conclusion References A General Recipe for Automated Machine Learning in Practice 1 Introduction 2 Methodology 3 Results Analysis 3.1 What We Are Trying to Automatize? 3.2 How Do We Want to Automate It? 4 A General Recipe for AutoML 4.1 Scheduling Loop 4.2 Meta Loop 4.3 Training Loop 4.4 Objective Function 5 Discussion 6 Conclusions References Semi-supervised Hierarchical Classification Based on Local Information 1 Introduction 2 Fundamentals 3 Related Work 4 SSHC Based on Local Information 4.1 Pseudo-Label an Instance 4.2 SISI: Similarity of an Instance with a Set of Instances 5 Experiments and Results 5.1 Evaluation Measures 5.2 Artificial Dataset 5.3 Real World Datasets 5.4 Statistical Analysis and Discussion 6 Conclusions and Future Work References The Impact of Allostatic Load on Machine Learning Models 1 Introduction 2 Literature Review 3 Dataset Composition 4 Pattern Detection Methodology 5 Results and Analysis 6 Conclusion References Natural Language Processing Antonymy-Synonymy Discrimination in Spanish with a Parasiamese Network 1 Introduction 2 Dataset 2.1 Data Sources 2.2 Antonymy and Synonymy Graphs 2.3 Dataset Splits 2.4 Dataset Quality 3 Experiments 3.1 Models 3.2 Random Search 3.3 Results Analysis 4 Conclusion References LSA-T: The First Continuous Argentinian Sign Language Dataset for Sign Language Translation 1 Introduction 1.1 Contributions 2 Related Work 2.1 LSA 2.2 SLT 3 LSA-T Dataset 3.1 Statistics and Analysis 3.2 Default Train-Test Sets 3.3 Signer Inference 4 Baseline Experiments 4.1 Proposed Approach 4.2 Metrics 4.3 Experimental Results 5 Conclusions and Future Work References TSPNet-HF: A Hand/Face TSPNet Method for Sign Language Translation 1 Introduction 2 Related Works 3 TSPNet 4 Proposal 4.1 Facial Expressions Feature Extraction 4.2 Aggregation Strategies 5 Experimental Methodology 5.1 Dataset 5.2 Metrics 5.3 Competing Methods 5.4 Implementation and Setup 6 Results and Discussion 6.1 Quantitative Analysis 6.2 Qualitative Analysis 7 Conclusion References Phonetic Speech Segmentation of Audiobooks by Using Adapted LSTM-Based Acoustic Models 1 Introduction 2 Data Description 3 Phonetic Alphabet 4 System Description 5 Experiments 5.1 Experiment I: The Effect of Detection and Excluding the Invalid Phones 5.2 Experiment II: The Strategy of Model Adaptation 6 Conclusion References Robotics and Computer Vision Depth Estimation from a Single Image Using Line Segments only 1 Introduction 2 Related Work 2.1 Ground Truth 2.2 Monocular Methods 2.3 Line Segments and Edges 3 Methodology 3.1 Intermediary Representation 3.2 Datasets 3.3 Neural Network 3.4 Evaluation 4 Experiments 5 Conclusion References Deep Learning Semantic Segmentation of Feet Using Infrared Thermal Images 1 Introduction 2 Methods 2.1 Thermography Database 2.2 Foot Segmentation 2.3 DL-Based Semantic Segmentation 3 Experimental Set-Up 3.1 Preprocessing and Data Augmentation 3.2 Artifact Removal 4 Results and Discussion 4.1 Comparing Metrics of Performance 4.2 Performed Results of DL Semantic Segmentation 5 Concluding Remarks References Where Are the Gates: Discovering Effective Waypoints for Autonomous Drone Racing 1 Introduction 2 Related Work 3 Methodology 3.1 Neural Pilot 3.2 Gate Detector 3.3 Waypoint Discovery 3.4 Waypoint Controller 4 Experiments 4.1 System Overview 4.2 Race Track Description 4.3 Experiment Constraints 5 Conclusion References Probabilistic Logic Markov Decision Processes for Modeling Driving Behaviors in Self-driving Cars 1 Introduction 2 Related Work 3 Theoretical Background 3.1 ProbLog Overview 3.2 Markov Decision Processes 3.3 MDP-ProbLog 4 Methodology 4.1 Design of the Probabilistic Logic MDP 4.2 Perceptual System 5 Experiments and Results 6 Conclusions and Future Work References Simulation and Forecasting Design of E. coli Growth Simulator Using Multi-agent System 1 Introduction 2 Related Work 3 Bacteria Model 4 Simulator Design 5 Results 6 Conclusions References Quantitative Models for Forecasting Demand for Perishable Products: A Systematic Review 1 Introduction 2 Systematic Literature Review 2.1 Research Problem 2.2 Search String Definition 2.3 Inclusion and Exclusion Criteria 2.4 Search Execution 3 Results 3.1 Main Data Found 3.2 Main Quantitative Models Used 3.3 Indicators Used to Evaluate the Solutions 4 Discussion 5 Conclusion References Short Papers FeetGUI: A Python-based Computer Vision Tool to Support Anesthesia Assessment Procedures Using Infrared Thermography 1 Problem Statement 2 Results and Contributions References Proposal of a Software Translator with Interlanguage Translation Resources, Brazilian Sign Language (Libras) – Portuguese Abstract 1 Problem Statement 2 Results and Contributions References Heart Disease Diagnoses: A Study Regarding Assigning Credibility to Evidence 1 Problem Statement 2 Contributions and Results References Forecasting Key Performance Indicators for Smart Connected Vehicles 1 Problem Statement 2 Empirical Results References Author Index