دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021 نویسندگان: Tuan D. Pham (editor), Hong Yan (editor), Muhammad W. Ashraf (editor), Folke Sjöberg (editor) سری: Computational Biology ISBN (شابک) : 3030699501, 9783030699505 ناشر: Springer سال نشر: 2021 تعداد صفحات: 0 زبان: English فرمت فایل : 7Z (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 87 مگابایت
در صورت تبدیل فایل کتاب Advances in Artificial Intelligence, Computation, and Data Science: For Medicine and Life Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در هوش مصنوعی، محاسبات و علم داده: برای پزشکی و علوم زندگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی (AI) در بیشتر زمینه های تحقیقاتی و کاربردی فراگیر شده است. در حالی که محاسبات می تواند به طور قابل توجهی تلاش های ذهنی برای حل مسائل پیچیده را کاهش دهد، الگوریتم های کامپیوتری موثر به بهبود مستمر ابزارهای هوش مصنوعی اجازه می دهد تا پیچیدگی را - هم در زمان و هم نیازهای حافظه - برای یادگیری ماشین در مجموعه داده های بزرگ مدیریت کند. در همین حال، علم داده یک رشته علمی در حال تکامل است که میکوشد بر موانع مهارتهای سنتی غلبه کند که برای امکانپذیر ساختن اکتشافات علمی در هنگام استفاده از نتایج تحقیقات بسیار محدود هستند. راهحلهای بسیاری از مشکلات در پزشکی و علوم زیستی که نمیتوان با این رویکردهای مرسوم پاسخ داد، برای جامعه ضروری است.
این کتاب ویرایششده تلاش میکند پیشرفتهای اخیر در حوزههای مکمل هوش مصنوعی، محاسبات، و را گزارش کند. علم داده با کاربرد در پزشکی و علوم زیستی مزایا برای خواننده بسیار زیاد است زیرا محققان حوزههای مشابه یا متفاوت میتوانند از پیشرفتهای پیشرفته و برنامههای کاربردی جدیدی که میتوانند برای پیادهسازی فوری یا پیگیری علمی آینده مفید باشند، آگاه باشند.
ویژگیها:
b>Artificial intelligence (AI) has become pervasive in most areas of research and applications. While computation can significantly reduce mental efforts for complex problem solving, effective computer algorithms allow continuous improvement of AI tools to handle complexity―in both time and memory requirements―for machine learning in large datasets. Meanwhile, data science is an evolving scientific discipline that strives to overcome the hindrance of traditional skills that are too limited to enable scientific discovery when leveraging research outcomes. Solutions to many problems in medicine and life science, which cannot be answered by these conventional approaches, are urgently needed for society.
This edited book attempts to report recent advances in the complementary domains of AI, computation, and data science with applications in medicine and life science. The benefits to the reader are manifold as researchers from similar or different fields can be aware of advanced developments and novel applications that can be useful for either immediate implementations or future scientific pursuit.
Features:
Preface Contents Part I Bioinformatics 1 Intelligent Learning and Verification of Biological Networks 1.1 Introduction 1.2 Statistical Learning of Regulatory Networks 1.2.1 INSPECT Change-Points Identification 1.2.2 Network Structure Learning and Searching 1.2.3 Regulatory Relationship Identification 1.3 Formal Analysis of Regulatory Networks 1.3.1 Temporal Logic Formula 1.3.2 Symbolic Model Checking 1.3.3 Time-Bounded Linear Temporal Logic (BLTL) 1.3.4 Probabilistic Model Checker PRISM 1.4 Integrative Data Analysis 1.5 Discussions References 2 Differential Expression Analysis of RNA-Seq Data and Co-expression Networks 2.1 Systems Biology 2.2 High Throughput Sequencing 2.3 RNA-seq Analysis 2.4 Formulating a Sequencing Library 2.5 Biological and Technical Variations 2.6 Assessment of Variations 2.6.1 Poisson’s Distribution 2.6.2 Negative Binomial Distribution 2.7 Method for Differential Expression Analysis 2.8 Generalized Linear Model (GLM) 2.9 Hypothesis Test 2.10 Normalization of Data 2.11 Trimmed Mean of M-values (TMM) 2.12 Relative Log Expression (RLE) 2.13 Upper-Quartile Normalization 2.14 Principal Component Analysis 2.14.1 Steps of PCA Analysis 2.15 Data Analysis of Gene Expression Profiles 2.16 An Illustration: A Differential Gene Expression Analysis Conducted on a Real Dataset 2.17 R Packages Used in the RNA-Seq Analysis 2.18 Removal of Lowly Transcribed Genes 2.19 Formation of DGEList Object Using EdgeR 2.20 Density Distributions 2.21 Normalization 2.22 Principal Component Analysis 2.23 Design Matrix 2.24 NB and QL Dispersion Evaluation 2.25 Annotating Genes 2.26 Gene Testing 2.27 GO Analysis 2.28 ROAST Analysis 2.29 CAMERA Test 2.30 Visualizing Gene Tests 2.31 Graph Theory Terminologies 2.32 Gene Regulatory Network (GRN) 2.33 Inference of Gene Regulatory Networks 2.34 Gene Regulatory Network Modelling 2.35 Correlation and Partial Correlation-based Methods 2.36 Co-expression Networks 2.37 Pre-processing of Data 2.38 Construction of Covariance Matrix 2.39 Measure of Similarity 2.40 Network Construction 2.41 Module Detection 2.42 Module Enrichment 2.43 WGCNA Package in R 2.44 Co-expression Network Analysis with Real Dataset 2.45 Concluding Remarks References 3 Learning Biomedical Networks: Toward Data-Informed Clinical Decision and Therapy 3.1 Biological Data and the Rise of Targeted Therapies 3.2 Network Analysis in Biomedical Informatics 3.2.1 Differential Network Analysis 3.2.2 Network-Based Regularization 3.2.3 Causal Discovery and Inference 3.3 Software and Biomedical Applications 3.4 Conclusions and Future Work References 4 Simultaneous Clustering of Multiple Gene Expression Datasets for Pattern Discovery 4.1 Simultaneous Clustering Methods 4.1.1 Cluster of Clusters (COCA) 4.1.2 Bi-CoPaM 4.1.3 UNCLES and M–N Scatter Plots 4.1.4 Clust 4.1.5 Deep Learning Approaches 4.2 Case Study 1: A Novel Subset of Genes with Expression Consistently Oppositely Correlated with Ribosome Biogenesis in Forty Yeast Datasets 4.2.1 Data and Approach 4.2.2 Results and Discussion 4.2.3 Summary and Conclusions 4.3 Case Study 2: A Transcriptomic Signature Derived from a Study of Sixteen Breast Cancer Cell-Line Datasets Predicts Poor Prognosis 4.3.1 Data and Approach 4.3.2 Results and Discussion 4.3.3 Summary and Conclusions 4.4 Case Study 3: Cross-Species Application of Clust Reveals Clusters with Contrasting Profiles Under Thermal Stress in Two Rotifer Animal Species 4.5 Summary and Conclusions References 5 Artificial Intelligence for Drug Development 5.1 Introduction 5.2 Methodologies in Pre-clinical and Clinical Trials 5.3 Post-Market Trials 5.4 Concluding Remarks References 6 Mathematical Bases for 2D Insect Trap Counts Modelling 6.1 Introduction 6.2 Mean Field and Mechanistic Models of Insect Movement with Trapping 6.2.1 Isotropic Diffusion Model and Computing Trap Counts 6.2.2 Individual Based Modelling Using Random Walks 6.2.3 Simple Random Walk (SRW) 6.2.4 Simulating Trapping 6.2.5 Equivalent Trap Counts 6.3 Geometrical Considerations for Trap Counts Modelling 6.3.1 Simulation Artefacts Due to the RW Jump Process 6.3.2 Impact of the Arena Boundary Shape, Size and the Average Release Distance 6.3.3 Impact of Trap Shape 6.4 Anisotropic Models of Insect Movement 6.4.1 Correlated Random Walk (CRW) 6.4.2 MSD Formula for the CRW 6.4.3 Measuring Tortuosity 6.4.4 Biased Random Walk (BRW) 6.4.5 MSD Formula for the BRW 6.4.6 Equivalent RWs in Terms of Diffusion 6.4.7 Drift Diffusion Equation 6.4.8 Biased and Correlated Random Walk (BCRW) 6.5 Effect of Movement on Trap Counts 6.5.1 Effect of Movement Diffusion 6.5.2 Baited Trapping 6.6 Concluding Remarks References Part II Medical Image Analysis 7 Artificial Intelligence in Dermatology: A Case Study for Facial Skin Diseases 7.1 Introduction 7.2 State of the Art 7.3 Study Case 7.3.1 Considered Skin Diseases 7.3.2 Machine-Learning/Deep-Learning Approaches 7.3.3 Preliminary Results 7.4 Developed Software 7.4.1 Patient Actions 7.4.2 Doctor Actions 7.5 Conclusion References 8 Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis 8.1 Introduction 8.2 Classification 8.2.1 Classifiers 8.2.2 Example 1: Similarity Metric 8.2.3 Example 2: Similarity Learning 8.3 Dense Prediction 8.3.1 Segmentation 8.3.2 Synthesis 8.4 Multi-modality Analysis 8.4.1 Example: A Non-deep-Learning Based Approach for Multi-modal Feature Selection 8.4.2 Example: A Deep Learning Based Approach for Multi-modality Fusion 8.5 Conclusion References 9 EfficientNet-Based Convolutional Neural Networks for Tuberculosis Classification 9.1 Introduction 9.2 Related Work 9.3 Methodology 9.4 Description of Dataset 9.5 Results and Discussions 9.5.1 Feature Visualization of pretrained models for TB classification 9.6 Conclusions References 10 AI in the Detection and Analysis of Colorectal Lesions Using Colonoscopy 10.1 Introduction 10.1.1 Colorectum and Colorectal Cancer 10.1.2 Colorectal Cancer Stages 10.1.3 Colonoscopy and Colorectal Polyps 10.1.4 Application of AI in Colonoscopy 10.2 Computer-Aided Detection in Colorectal Polyps 10.2.1 Why Computer-Aided Detection 10.2.2 Early Computer-Aided Detection Algorithm 10.2.3 Recent Computer-Aided Detection Algorithms 10.3 Computer-Aided Classification in Colorectal Polyps 10.3.1 Why Computer-Aided Classification 10.3.2 Early Computer-Aided Analysis (CADx) 10.3.3 Recent Progress of CADx 10.3.4 Limitations of CADx 10.4 Conclusion References 11 Deep Learning-Driven Models for Endoscopic Image Analysis 11.1 Introduction 11.2 Deep Learning Architectures 11.2.1 Convolutional Neural Networks for Image Classification 11.2.2 Region-Level CNNs for Lesion Detection 11.2.3 Fully Convolutional Neural Networks for Segmentation 11.3 Case Study I: Gastrointestinal Hemorrhage Recognition in WCE Images 11.3.1 Background of the Application 11.3.2 Improved Learning Strategy 11.3.3 Dataset 11.3.4 Evaluation Metrics 11.3.5 Experimental Results 11.4 Case Study II: Colorectal Polyp Recognition in Colonoscopy Images 11.4.1 Background of the Application 11.4.2 Improved Learning Strategy 11.4.3 Dataset 11.4.4 Evaluation Metrics 11.4.5 Experimental Results 11.5 Conclusion and Future Perspectives References Part III Physiology 12 A Dynamic Evaluation Mechanism of Human Upper Limb Muscle Forces 12.1 Introduction 12.2 Related Work 12.3 Materials and Methods 12.3.1 Data Collection and Preprocessing 12.3.2 Joint Angle Estimation 12.3.3 OpenSim Simulation 12.3.4 Muscle Activation Dynamics 12.4 Results 12.5 Discussion 12.6 Conclusions References 13 Resting-State EEG Sex Classification Using Selected Brain Connectivity Representation 13.1 Introduction 13.2 Related Work 13.3 Data and Methods 13.3.1 Dataset Description 13.3.2 Preprocessing 13.3.3 Signal Representation 13.3.4 Feature Analysis 13.3.5 Classification 13.4 Results 13.4.1 Feature Selection 13.4.2 Validation Results 13.4.3 Test Results 13.5 Conclusions References Part IV Innovation in Medicine and Health 14 Augmented Medicine: Changing Clinical Practice with Artificial Intelligence 14.1 Introduction 14.2 Implementation of Augmented Medicine in Clinical Practice: An Overview 14.2.1 Monitoring with Wearable Technology 14.2.2 AI for Diagnosis 14.2.3 Machine Learning for Prediction 14.3 Conclusions References 15 Environmental Assessment Based on Health Information Using Artificial Intelligence 15.1 Introduction 15.2 Environmental Parameters and Health 15.2.1 Air Pollution 15.2.2 Weather-Related Parameters 15.2.3 Illumination 15.2.4 Implications for Health-Related BACS 15.3 System Concept for Health based Environmental Assessment 15.3.1 System Components and Their Interactions 15.3.2 Data Interpretation for Medical Staff 15.3.3 Feedback Systems for Patients 15.3.4 Communication Between BACS and EHR 15.4 Approaches for Environmental Assessment 15.4.1 Data Organization 15.4.2 Derived Constraints 15.4.3 Appropriate Methods for Environmental Risk Estimation 15.5 Conclusion and Discussion References Index