دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Seema Rawat, V. Ajantha Devi, Praveen Kumar سری: ISBN (شابک) : 9788770040174, 9781032630212 ناشر: Reactive Publishing سال نشر: 2024 تعداد صفحات: 430 [431] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 42 Mb
در صورت تبدیل فایل کتاب Advancement of Data Processing Methods for Artificial and Computing Intelligence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت روشهای پردازش داده برای هوش مصنوعی و محاسباتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface List of Contributors List of Figures List of Tables List of Abbreviations Introduction to Advancement of Data Processing Methods for Artifcial and Computing Intelligence Section 1: Trends in Data Processing and Analytics Chapter 1: Novel Nonparametric Method of Multivariate Data Analysis and Interpretation 1.1: Introduction 1.2: Statistical Depth 1.3: Prediction Sets 1.4: Petunin Ellipsoids and Their Statistical Properties 1.4.1: Case d = 2 1.4.2: Case d > 2 1.4.3: Statistical properties of Petunin`s ellipsoids 1.5: Petunin Ellipsoids and Their Statistical Properties 1.5.1: Uniform distribution 1.5.2: Normal Distribution 1.5.3: Laplace distribution 1.5.4: Gamma distribution 1.5.5: Exponential distribution 1.6: Conclusion References Chapter 2: Data Analysis on Automation of Purging with IoT in FRAMO Cargo Pump 2.1: Introduction 2.2: FRAMO Cargo Pump 2.2.1: Cofferdam 2.2.2: Cargo pump purging operation 2.3: ARDUINO Board 2.3.1: Fork-type density meter 2.3.2: pH Meter 2.3.3: Color sensor 2.3.4: Level sensor 2.3.5: Internet of Things (IoT) 2.4: Proposed Method 2.4.1: Purging automation 2.4.2: Data acquisition and analysis 2.4.3: Communication 2.5: Experimental Data Analysis 2.6: Limitations 2.7: Conclusion References Chapter 3: Big Data Analytics in Healthcare Sector: Potential Strength and Challenges 3.1: Introduction 3.2: Literature Review 3.3: Research Methodology 3.4: Existing Challenges and Benefts that are Prevalent in Big Data Healthcare 3.5: Process Flow of Big Data Analytics in Healthcare 3.6: Tools and Techniques in Healthcare Data Analytics 3.7: Classifcation and Clustering Techniques Neural networks algorithms 3.8: Limitations and Strength 3.9: Conclusion References Chapter 4: Role of Big Data Analytics in the Cloud Applications 4.1: Introduction 4.1.1: About cloud computing 4.1.2: About big data analytics 4.2: Cloud Computing 4.3: Conclusion References Chapter 5: Big Data Analytics with Artifcial Intelligence: A Comprehensive Investigation 5.1: Introduction 5.2: Context and Related Work 5.2.1: Big data 5.2.2: Applications of big data 5.2.3: Big data challenges 5.2.4: Big data platforms 5.3: Artifcial intelligence 5.3.1: Examples of AI applications 5.4: Conclusion References Chapter 6: Cloud Computing Environment for Big Data Analytics 6.1: Introduction to Cloud Computing 6.2: Advantages of Cloud Computing 6.2.1 6.2.2: Type of clouds – the ways to deploy 6.2.3: Service models of cloud 6.2.4: Disadvantages of cloud computing 6.2.5: Cloud computing use cases 6.3: Defnition of Big Data 6.3.1: Characteristics of big data 6.3.2: Cloud-based big data management tools 6.3.3: Big data lends help in various forms in a business 6.3.4: Challenges 6.4: Cloud Computing Versus Big Data 6.4.1: The usefulness of integration of big data and cloud computing 6.4.2: The architecture of cloud in big data 6.4.3: Advantages of using cloud for big data analytics 6.5: Conclusion References Section 2: Advance Implementation of Artifcial Intelligence and Data Analytics Chapter 7: Artifcial Intelligence-based Data Wrangling Issues and Data Analytics Process for Various Domains 7.1: Introduction 7.1.1: Need for information inside the organization 7.2: Categories of Data 7.2.1: Qualitative data 7.2.2: Quantitative information 7.3: Why AI in Data Analysis 7.4: Why AI Is Required for Data Manipulation? 7.4.1: Data wrangling 7.4.2: Why is data wrangling important? 7.4.3: Data cleaning procedure 7.4.4: Enrichment of data fne-tuning 7.4.5: Data wrangling methods and instruments 7.5: Data Science Lifecycle 7.5.1: The evolution of data science 7.5.2: Enhancements to data analytics 7.6: IBM Watson’s Role in Data Analytics 7.6.1: How IBM analytics operates 7.7: Role of NLP in Data Analytics 7.7.1: Tools for data analytics and visualization 7.7.2: Applications of AI in data analytics 7.8: Conclusion References Chapter 8: Artifcial Intelligence and Data Science in Various Domains 8.1: Artifcial Intelligence 8.2: Germination of Artifcial Intelligence 8.2.1: Types of artifcial intelligence 8.2.2: Fields that form artifcial intelligence 8.2.3: Is artifcial intelligence a threat to human existence? 8.2.4: Branches of artifcial intelligence 8.2.5: Applications of artifcial intelligence 8.2.6: Data collection 8.2.7: Data science 8.2.8: Data with artifcial intelligence 8.3: Workfows of Artifcial Intelligence and Its Tools 8.3.1: Workfow driven by AI 8.3.2: Artifcial Intelligence in data science 8.3.3: Data science 8.4: Artifcial Neural Networks 8.4.1: Algorithm of neural network (ANN) 8.4.2: TensorFlow 2.0 8.4.3: TensorFlow: features and applications 8.4.4: Tensors 8.4.5: Generative adversarial network 8.4.6: Applications of GANN 8.5: Real Life-based Examples 8.5.1: Case study 1 8.5.2: Result and discussion 8.6: Conclusion References Chapter 9: Method for Implementing Time-Control Functions in Real-time Operating Systems 9.1: Introduction 9.2: Materials and Methods 9.2.1: Problems related to control 9.2.2: Technological proposal based on real-time programming 9.2.3: Solution confguration 9.2.4: Implementation of functions 9.3: Results 9.4: Conclusion Acknowledgments References Chapter 10: Effcient Blurred and Deblurred Image Classifcation using Machine Learning Approach 10.1: Introduction 10.2: Related Works 10.3: System Design 10.3.1: DWT and NN classifer 10.3.2: Image denoizing 10.3.3: The image deblurring problem 10.3.4: Artifcial neural network classifer 10.4: Results and Discussion 10.5: Conclusion 10.6: Future Work References Chapter 11: Method for Characterization of Brain Activity using Brain–Computer Interface Devices 11.1: Introduction 11.2: Materials and Methods 11.2.1: Description of the requirements 11.2.2: Method description 11.2.3: Analysis of data interpretation 11.3: Results 11.4: Conclusion Acknowledgments References Chapter 12: Streaming Highway Traffc Alerts using Twitter API 12.1: Introduction 12.1.1: Twitter and Twitter API 12.1.2: Preprocessing 12.1.3: Model building 12.1.4: Web application 12.1.5: Model building, training, and classifcation 12.2: Related Works 12.3: Background 12.4: Objectives 12.5: Methodology 12.6: Technologies Used 12.7: TWITTER: Natural Language Processing 12.7.1: Vectorization 12.7.2: Terminologies 12.7.3: Count Vectorizer 12.8: Results and Discussion 12.8.1: Exploratory analysis on datasets 12.8.2: ROC curve and AUROC 12.8.3: Preprocessing outputs 12.8.4: Test inputs and outputs 12.8.5: Deployment 12.9: Conclusion References Chapter 13: Harnessing the Power of Artifcial Intelligence and Data Science 13.1: Introduction 13.2: Different Domains in AI and Data Science 13.2.1: Healthcare 13.2.2: Finance 13.2.3: E-commerce 13.2.4: Education 13.2.5: Transportation 13.2.6: Agriculture 13.3: Conclusion Acknowlegdements References Chapter 14: Determining the Severity of Diabetic Retinopathy through Neural Network Models 14.1: Introduction 14.2: Background 14.3: Algorithms under Consideration 14.3.1: VGG16: (without Gaussian blur) 14.3.2: MobileNetV2 14.3.3: ResNet50 14.3.4: InceptionV3 14.4: Data Collection 14.5: Implementation Steps of the Algorithms 14.5.1: Implementation steps of VGG16 14.5.2: Implementation of the MobileNetV2: model 14.5.3: Implementation steps of ResNet50 14.5.4: Implementation of InceptionV3 14.6: Results 14.6.1: VGG16 14.6.2: MobileNetV2 14.6.3: ResNet50 14.6.4: InceptionV3 14.7: Conclusion References Chapter 15: Method for Muscle Activity Characterization using Wearable Devices 15.1: Introduction 15.2: Materials and Methods 15.2.1: Description of the problem 15.2.2: Description of the method 15.2.3: Protocol for use of the method 15.2.4: Results of the method 15.2.5: Analysis and interpretation of results 15.3: Results 15.4: Conclusion Acknowlegdements References Index About the Editors