دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sanjay K. Nayak, Kingshuk Dutta, Jaydevsinh M. Gohil سری: ISBN (شابک) : 0323885144, 9780323885140 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 649 [650] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 42 Mb
در صورت تبدیل فایل کتاب Advancement in Polymer-Based Membranes for Water Remediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در غشاهای مبتنی بر پلیمر برای تصفیه آب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیشرفتها در غشاهای مبتنی بر پلیمر برای تصفیه آب علم و مهندسی پیشرفته غشاء را در پشت فرآیندهای جداسازی در حوزه سیستمهای غشایی مبتنی بر پلیمر در تصفیه آب توصیف میکند. بر جنبههای مختلف، از مفاهیم اساسی گرفته تا تجاریسازی غشاهای تحت فشار و پتانسیل، بهروزرسانیشده با آخرین پیشرفتهای فناوری، و مواد پلیمری مرتبط و پتانسیل کاربرد در سیستمهای تصفیه آب تأکید شده است. همچنین در این کتاب پیشرفتهایی در پلیمرها برای کاربرد غشایی در اسمز معکوس، نانوفیلتراسیون، اولترافیلتراسیون، میکروفیلتراسیون، اسمز رو به جلو و غشاهای تبادل یون پلیمری برای الکترودیالیز و دیونیزاسیون خازنی گنجانده شده است.
این کتاب با تحلیلهای انتقادی و نظرات کارشناسان در سراسر جهان، توجه قابل توجهی را در میان کاربران واقعی، یعنی دانشمندان، مهندسان، صنعتگران، کارآفرینان و دانشجویان بهخود جلب خواهد کرد. span>
Advancements in Polymer-Based Membranes for Water Remediation describes the advanced membrane science and engineering behind the separation processes within the domain of polymer-based membrane systems in water remediation. Emphasis has been put on several aspects, ranging from fundamental concepts to the commercialization of pressure and potential driven membranes, updated with the latest technological progresses, and relevant polymer materials and application potential towards water treatment systems. Also included in this book are advances in polymers for membrane application in reverse osmosis, nanofiltration, ultrafiltration, microfiltration, forward osmosis, and polymeric ion-exchange membranes for electrodialysis and capacitive deionization.
With its critical analyzes and opinions from experts around the world, this book will garner considerable interest among actual users, i.e., scientists, engineers, industrialists, entrepreneurs and students.
Advancement in Polymer-based Membranes for Water Remediation Copyright Contents Preface Foreword List of contributors About the editors Acknowledgments 1 Microfiltration and ultrafiltration membrane technologies 1.1 Introduction 1.1.1 Basics of membrane process 1.1.2 Historical overview of ultrafiltration and microfiltration membranes 1.1.2.1 Microfiltration membrane 1.1.2.2 Ultrafiltration membrane 1.2 Membrane science and theory 1.2.1 Solute and solvent transport through microfiltration/ultrafiltration membranes 1.2.2 Concentration polarization 1.2.3 Membrane material and geometry 1.2.4 Mode of operation in the membrane process 1.2.5 Fouling in microfiltration and ultrafiltration membranes 1.2.5.1 Regeneration by physical cleaning 1.2.5.2 Regeneration by chemical cleaning 1.3 Membrane characterization methods 1.3.1 Invasive methods 1.3.1.1 Chemical composition of the membrane surface 1.3.1.1.1 Attenuated total reflectance Fourier transform infrared spectroscopy 1.3.1.1.2 X-ray photoelectron spectroscopy 1.3.1.1.3 Energy dispersive X-ray spectroscopy 1.3.1.2 Morphologies of the membrane surface 1.3.1.2.1 Scanning electron microscope 1.3.1.2.2 Environmental scanning electron microscopy 1.3.1.2.3 Atomic force microscopy 1.3.2 Noninvasive methods 1.3.2.1 Inline method 1.3.2.2 At-line method 1.3.2.3 Offline method 1.4 Module design and process configuration 1.4.1 Module design 1.4.1.1 Plate-and-frame membrane module 1.4.1.2 Tubular module 1.4.1.3 Spiral-wound module 1.4.1.4 Hollow fiber/shell and tube module 1.4.2 Process configuration 1.4.2.1 Continuous filtration process 1.4.2.2 Batch filtration 1.4.2.3 Feed-and-bleed/fed-batch filtration 1.4.2.4 Single and multistage 1.4.2.5 Single and multipass 1.4.3 Commercial fabrication techniques employed for polymeric flat sheet and hollow-fiber membranes 1.4.3.1 Flat-sheet membranes 1.4.3.2 Hollow-fiber membranes 1.5 Application of polymeric ultrafiltration and microfiltration membranes 1.5.1 Potable water reuse 1.5.2 Recovery of dye and pigments 1.5.3 Treatment of effluent generated by dairy processing industries 1.5.4 Treatment of oily wastewater 1.5.5 Recovery of heavy metal from industry effluent 1.6 Summary References 2 Polymer-based microfiltration/ultrafiltration membranes 2.1 Introduction 2.2 Polymers as raw material to synthesize microfiltration/ultrafiltration membranes 2.2.1 Classification 2.2.2 Membrane fabrication method microfiltration/ultrafiltration 2.2.2.1 Mechanical techniques 2.2.2.1.1 Stretching 2.2.2.1.2 Sintering 2.2.2.2 Chemical techniques 2.2.2.2.1 Track etching 2.2.2.2.2 Template leaching 2.2.2.2.3 Phase inversion Vapor-induced phase separation Liquid-induced phase separation Thermally induced phase separation Phase inversion techniques under progress in laboratory 2.2.2.2.4 Electrospinning 2.2.2.2.5 3D-printing 2.2.2.2.6 Nanoimprint lithography Thermal nanoimprint lithography Photo nanoimprint lithography 2.2.3 Commercial status of membrane fabrication techniques 2.2.3.1 Fabrication of flat-sheet membranes 2.2.3.2 Fabrication of hollow-fiber membranes 2.3 Effect of polymer-enhanced microfiltration/ultrafiltration membranes 2.3.1 Structural property 2.3.1.1 Crystallinity of the polymer 2.3.1.2 Pore structure 2.3.1.3 Surface properties 2.3.1.3.1 Hydrophilic and hydrophobic properties of the membrane 2.3.1.3.2 Surface charge 2.3.2 Functionalization methods for membrane surface 2.3.2.1 Surface functional modification 2.3.2.1.1 Self-assembly 2.3.2.1.2 Coating 2.3.2.1.3 Chemical treatment 2.3.2.1.4 Plasma treatment 2.3.2.1.5 Surface graft polymerization 2.3.2.2 Functionalization of polymeric membrane by molecular imprinting 2.3.2.2.1 Formation of imprinting sites by surface photo-grafting 2.3.2.2.2 Formation of imprinting sites by surface deposition 2.3.2.2.3 Formation of imprinting sites by emulsion polymerization on the surface 2.3.2.3 Functionalization of polymeric membrane by enzyme immobilization 2.3.2.3.1 Enzyme immobilization by physical absorption 2.3.2.3.2 Enzyme immobilization by chemical binding 2.3.2.3.3 Enzyme immobilization by entrapment 2.3.2.3.4 Other methods for enzyme immobilization 2.3.3 Physiochemical properties 2.3.3.1 Membrane surface modification using hydrophilic materials 2.3.3.2 Membrane surface modification using hydrophobic/amphiphilic materials 2.4 Recent advances made in polymeric microfiltration/ultrafiltration membranes for water remediation application 2.4.1 Polymeric nanocomposite membranes 2.4.2 Literature review on the recent advances made in the field of polymeric microfiltration/ultrafiltration for water rem... 2.5 Microplastics and polymeric membranes 2.6 Prospective References 3 Polymer-based nano-enhanced microfiltration/ultrafiltration membranes 3.1 Introduction 3.2 Nanocomposite membranes 3.3 Hollow fiber nano-enhanced membranes 3.4 Main aspects in membrane performances 3.4.1 Fouling membranes 3.4.2 Permeability and selectivity 3.4.3 Physical properties 3.5 Carbon nanotubes and graphene oxide 3.5.1 Fouling 3.5.2 Permeability and selectivity 3.5.3 Physical properties 3.6 Metallic nanoparticles 3.6.1 Titanium dioxide 3.6.2 Silver 3.6.3 Copper 3.6.4 Zinc oxide 3.6.5 Fouling 3.6.6 Permeability and selectivity 3.6.7 Physical properties 3.7 Stability of nanocomposite membranes 3.8 Future research 3.9 Challenges and future perspectives 3.10 Conclusions References Further reading 4 Nanofiltration membrane technologies 4.1 Introduction 4.2 Operation principle and transport mechanism 4.2.1 Nanofiltration pore model development and progress 4.2.2 Diffusion and filtration mechanism 4.2.3 Role of membrane charge on NF performance 4.3 Types of polymeric membranes and application domain 4.3.1 Polymer used in membrane synthesis 4.3.2 Other types of NF membranes 4.3.2.1 Carbon nanomaterials-based NF 4.3.2.2 Metal–organic framework-based NF 4.3.3 Application of NF membrane 4.3.3.1 Dye containing wastewater treatment in textile industry 4.3.3.2 NF in food processing industry 4.3.3.3 NF in heavy metals removal from industrial waste 4.4 Polymeric membrane structure and configurations 4.5 NF membrane preparation technologies 4.5.1 Interfacial polymerization 4.5.2 Phase inversion 4.5.3 Posttreatment of porous support 4.5.4 Layer-by-layer assembly 4.5.5 Hollow fiber NF membrane 4.6 Commercially available membranes 4.7 Limitations and key mitigation strategies 4.7.1 Nexus between NF properties: fouling and antifouling 4.7.2 Generation of membrane retentate 4.8 Summary and future directions References 5 Polymer-based nanofiltration membranes 5.1 Introduction 5.2 Polymer-based nanofiltration membranes 5.2.1 Natural and bioinspired nanofiltration membranes 5.2.2 Mixed-matrix nanofiltration membranes 5.2.3 Block-copolymer nanofiltration membrane 5.2.4 Intrinsic microporous polymer-based nanofiltration membrane 5.3 Preparation of polymer-based nanofiltration membranes 5.3.1 Phase inversion 5.3.2 Interfacial polymerization 5.3.3 Layer-by-layer assembly 5.3.4 Posttreatment 5.4 Thin-film polymer composite nanofiltration membranes 5.5 Effect of polymeric support 5.6 Potential of polymer-composite nanofiltration membranes for water desalination 5.7 Polymers for solvent-resistant nanofiltration membranes 5.8 Commercialization status and commercial viability 5.9 Summary and future direction References 6 Polymer-based nanoenhanced nanofiltration membranes 6.1 Introduction 6.1.1 Introduction to nanoenhanced nanofiltration membranes 6.1.1.1 Preparation of nanoenhanced nanofiltration membranes 6.2 Mixed matrix polymer-based nanoenhanced nanofiltration membranes 6.2.1 Introduction 6.2.2 Asymmetric mixed matrix nanofiltration membranes prepared by phase inversion 6.2.3 Thin-film polymer nanocomposite nanofiltration membranes 6.2.3.1 Fabrication of thin-film nanocomposite nanofiltration membranes 6.2.3.1.1 Graphene oxide-based thin-film nanocomposite nanofiltration membranes 6.2.3.1.2 Carbon nanotube-incorporated thin-film nanocomposite nanofiltration membranes 6.2.3.1.3 Metal–organic framework-integrated thin-film nanocomposite nanofiltration membranes 6.2.3.1.4 Nanohybrid structure-based thin-film nanocomposite membranes 6.3 Electrospun nanofibrous polymers for nanofiltration applications 6.3.1 Introduction to electrospinning 6.3.2 Electrospun nanofiber application in nanofiltration 6.4 Nanoenhanced hollow-fiber nanofiltration membranes 6.5 Commercialization status and commercial viability 6.6 Summary and future directions Abbreviations References 7 Polymer-based bioinspired, biomimetic, and stimuli-responsive nanofiltration membranes 7.1 Introduction 7.2 Bioinspired membranes and their applications 7.2.1 Dopamine-based nanofiltration membrane 7.2.2 Tannic acid-based nanofiltration membranes 7.2.2.1 Tannic acid-based nanofiltration membranes with hollow fiber configuration 7.2.3 Other bioinspired nanofiltration membranes and their application 7.3 Biomimetic membranes 7.3.1 Aquaporin-based biomimetic membranes 7.3.2 Application of aquaporin-based biomimetic nanofiltration membranes 7.3.3 Aquaporin-based biomimetic nanofiltration membranes with hollow fiber configuration 7.4 Stimuli-responsive/smart membranes 7.4.1 pH-responsive membranes 7.4.2 Magnetically responsive membranes 7.4.3 Temperature-responsive membrane 7.4.4 Photo-responsive membranes 7.4.5 CO2-responsive nanofiltration membranes 7.4.6 Stimuli-responsive membranes with hollow fiber configuration 7.5 Commercial status and future directions 7.6 Summary Nomenclature References 8 Reverse and forward osmosis membrane technologies 8.1 Introduction 8.2 Classification of osmotic processes and basic concept 8.2.1 Transport membrane mechanism 8.2.1.1 Irreversible thermodynamics models 8.2.1.2 Homogeneous models 8.2.1.3 Solution–diffusion–imperfection model 8.2.1.4 Extended solution–diffusion model 8.2.1.5 Pore models 8.3 Reverse osmosis and forward osmosis membranes 8.4 Concentration polarization in an osmotic-driven membrane 8.4.1 External concentration polarization 8.4.2 Internal concentration polarization 8.5 Reverse osmosis and forward osmosis membrane fabrication methods 8.6 Advances in forward osmosis and reverse osmosis membranes’ structures and properties 8.6.1 Reverse osmosis membrane development 8.6.2 Forward osmosis membrane development 8.6.2.1 Phase inversion membranes 8.6.2.1.1 Cellulose acetate 8.6.2.1.2 Polybenzimidazole 8.6.2.1.3 Polyamide-imide 8.6.2.1.4 Composite membranes 8.6.2.1.5 Thin-film composite membranes 8.6.2.1.6 Thin-film nanocomposite membranes 8.6.2.1.7 Layer-by-layer composite membranes 8.6.2.1.8 Biomimetic membranes 8.7 Custom designs of flat sheet forward osmosis and reverse osmosis membranes 8.7.1 Selective rejection layer 8.7.2 Support polymeric layer 8.7.3 Support backing fabric 8.8 Concluding remarks and recommendations References 9 Polymer-based reverse osmosis membranes 9.1 Introduction 9.2 Asymmetric polymer-based reverse osmosis membranes 9.3 Thin-film composite membrane 9.3.1 Reverse osmosis membranes for boron removal 9.3.2 Reverse osmosis membranes for antifouling/chlorine tolerant 9.3.3 Hollow fiber reverse osmosis membranes 9.4 Potential of different polymer-based reverse osmosis membranes for brackish water desalination 9.5 Polymer-based reverse osmosis membranes for seawater desalination 9.5.1 Polyelectrolyte membranes 9.5.2 Aquaporin biomimetic membranes 9.5.3 Supramolecular polymers and water-soluble polymers 9.6 Commercialization status and commercial viability 9.7 Summary and future direction References 10 Polymer-based nano-enhanced reverse osmosis membranes 10.1 Introduction 10.2 Preparation strategies of polymer-based nano-enhanced reverse osmosis membranes 10.2.1 Conventional nanocomposite or mixed matrix membrane 10.2.2 Thin-film composite with nanocomposite substrate 10.2.3 Thin-film nanocomposite 10.2.4 Nanocomposite located at membrane surface 10.3 Polymer nanocomposite reverse osmosis membranes 10.3.1 Carbon based 10.3.1.1 Carbon nanotubes 10.3.1.2 Graphene oxide 10.3.1.3 Quantum dots 10.3.2 Metal and metal oxides based 10.3.2.1 Silver 10.3.2.2 Copper 10.3.2.3 Titanium dioxide 10.3.2.4 Zinc oxide 10.3.2.5 Alumina 10.3.2.6 Metal-organic frameworks 10.3.3 Other nanoparticles 10.3.3.1 Silica 10.3.3.2 Halloysite (aluminosilicate) 10.3.3.3 Zeolite 10.3.3.4 Cellulose nanocrystals 10.4 Potential of different polymer-based nanocomposite reverse osmosis membranes for water desalination 10.5 Potential other applications of polymer nanocomposite reverse osmosis membranes in water treatment 10.6 Commercialization status and viability 10.7 Way forward 10.8 Conclusion References 11 Reuse and recycling of end-of-life reverse osmosis membranes 11.1 Introduction 11.2 Reverse osmosis membrane technology 11.3 Reverse osmosis membranes and modules 11.4 Fouling in reverse osmosis separation process: problem, prevention, and cleaning protocols 11.4.1 Inorganic fouling 11.4.2 Colloidal fouling 11.4.3 Organic fouling 11.4.4 Biofouling 11.4.5 Fouling prevention and mitigation 11.5 End-of-life reverse osmosis membrane modules: reuse and recycling techniques 11.5.1 Cleaning strategies adopted for reverse osmosis fouled membranes and discarded modules 11.5.2 Reuse of discarded reverse osmosis membrane modules 11.5.3 Recycling discarded reverse osmosis membrane modules 11.6 Applications of reverse osmosis recycled membranes in other membrane processes 11.6.1 Reverse osmosis recycled membranes in ultrafiltration and microfiltration process 11.6.2 Reverse osmosis recycled membranes in membrane distillation, membrane biofilms reactors, and electrodialysis separat... 11.7 Conclusions References 12 Polymer-based forward osmosis membranes 12.1 Introduction 12.1.1 Important notes in forward osmosis membrane transport 12.1.2 Concentration polarization 12.2 Polymer-based flat sheet forward osmosis membranes 12.2.1 Single-layer membranes 12.2.1.1 Cellulosic membranes 12.2.1.2 Polyamide-imide-based membranes 12.2.1.3 Polybenzimidazole membranes 12.2.1.4 Others 12.2.2 Dual-layer membranes 12.2.2.1 Support layer 12.2.2.1.1 Polysulfone-based membranes 12.2.2.1.2 Polyethersulfone-based membranes 12.2.2.1.3 Polyacrylonitrile (PAN)-based membranes 12.2.2.1.4 Cellulosic membranes 12.2.2.1.5 Polyvinyl chloride based membranes 12.2.2.1.6 Poly(vinylidene difluoride) (PVDF)-based membranes 12.2.2.1.7 Polyazole-based membranes 12.2.2.2 Active layer 12.2.2.2.1 Monomers 12.2.2.2.2 Solvent 12.2.2.2.3 Postmodification 12.2.2.2.4 Additive 12.2.2.2.5 Reaction conditions 12.2.3 Layer-by-layer membranes 12.2.4 Double-skinned membranes 12.2.5 Impregnated membranes 12.2.6 Biomimetic membranes 12.3 Polymer-based hollow fiber forward osmosis membranes 12.3.1 Single-layer membranes 12.3.2 Dual-layer membranes 12.3.3 Layer-by-layer membranes 12.3.4 Double-skinned membranes 12.3.5 Biomimetic membranes 12.4 Commercialization status and commercial viability 12.5 Summary and future directions Abbreviations Nomenclature References 13 Polymer-based nano-enhanced forward osmosis membranes 13.1 Introduction 13.2 Polymer-based mixed matrix forward osmosis membranes 13.2.1 Overview 13.2.2 Common membrane preparation and modification approaches 13.2.3 Nanomaterials classification 13.3 Polymer-based nanocomposite flat sheet forward osmosis membranes 13.3.1 Methods for nanocomposite forward osmosis membrane preparation 13.3.2 Nanomaterials-incorporated support/substrate layer 13.3.2.1 Substrate layer containing carbon-based nanomaterials 13.3.2.2 Substrate layer containing metal-based nanomaterials 13.3.3 Nanomaterials-incorporated selective/active layer 13.3.3.1 Active layer containing carbon-based nanomaterials 13.3.3.2 Active layer containing metal-based nanomaterials 13.3.4 Nanomaterials-incorporated support/substrate and selective/active layers 13.4 Polymer-based nanocomposite hollow fiber forward osmosis membranes 13.4.1 Active layer modifications 13.4.1.1 Active layer containing carbon-based nanomaterials 13.4.1.2 Active layer containing metal-based nanomaterials 13.4.1.3 Biomimetic forward osmosis membranes 13.5 Nanofibrous-based forward osmosis membranes 13.6 Nanomaterials used in surface modification of forward osmosis membranes 13.7 Polymer-based stimuli-responsive forward osmosis membranes 13.8 Commercialization status of the forward osmosis membranes 13.9 Summary and future directions References 14 Electrodialysis, electrodialysis reversal and capacitive deionization technologies 14.1 Introduction 14.2 Structure of ion-exchange membranes 14.2.1 Anion-exchange membranes 14.2.2 Cation-exchange membranes 14.2.3 Bipolar membranes 14.3 Electrodialysis, electrodialysis reversal, and selective electrodialysis 14.3.1 General description of electrodialysis cells: configuration and operating principles 14.3.2 Transport equations and driving forces 14.3.3 Achievements in the use of electrodialysis, electrodialysis reversal, and selective electrodialysis as water remedia... 14.4 Capacitive deionization-based technologies 14.4.1 General description of capacitive deionization cells: configuration, operating principles, and flow patterns 14.4.2 Evaluation of the efficiency and performance of the capacitive deionization-based technologies 14.4.3 Achievements in use of capacitive deionization-based technologies as water remediation methods 14.5 Limitations and key mitigation strategies 14.5.1 Process cost 14.5.1.1 Plant investment costs 14.5.1.2 Operating costs 14.5.2 Membrane clogging 14.5.3 Membrane selectivity 14.6 Summary and future directions References 15 Polymeric membranes in electrodialysis, electrodialysis reversal, and capacitive deionization technologies 15.1 Introduction 15.2 Ion-exchange membranes and their fabrication processes 15.2.1 Ion-exchange membranes’ classification 15.2.2 Preparation of ion-exchange membranes 15.2.3 Recent developments in polymeric ion-exchange membranes 15.3 Application and performance of ion-exchange membranes in electrodialysis 15.3.1 Desalination with electrodialysis 15.3.2 Wastewater treatment 15.3.3 Preferential ion separation 15.3.4 Other ionic separations 15.4 Application and performance of ion-exchange membranes in electrodialysis reversal 15.4.1 Principle of electrodialysis reversal 15.4.2 Desalination of high-concentration solution 15.4.3 Other ion separation processes 15.5 Application and performance of ion-exchange membranes in membrane capacitive deionization 15.5.1 Role of ion-exchange membrane in membrane capacitive deionization 15.5.2 Desalination processes 15.5.3 Membrane capacitive deionization applications in other deionization processes 15.6 Concluding remarks References 16 Polymeric nano-enhanced membranes in electrodialysis, electrodialysis reversal and capacitive deionization technologies 16.1 Introduction 16.2 Preparation of polymer-based nano-enhanced ion-exchange membranes 16.2.1 Blending 16.2.2 In situ technique 16.3 Analysis of different ion-exchange membranes for water treatment 16.4 Commercialization status and commercial viability 16.5 Summary and future directions References 17 Polymer-based membranes for membrane distillation Abbreviations Nomenclature 17.1 Introduction 17.1.1 Dearth of water 17.1.2 History of membrane distillation 17.1.3 Recent trends in polymer-based membranes in membrane distillation 17.2 Principle and different configurations of membrane distillation 17.2.1 Membrane distillation principle 17.2.2 Direct contact membrane distillation 17.2.3 Air gap membrane distillation 17.2.4 Sweep gas membrane distillation 17.2.5 Vacuum membrane distillation 17.3 Fabrication techniques and module designs of MD membrane 17.3.1 Phase inversion 17.3.2 Stretching 17.3.3 Sintering 17.3.4 Electrospinning 17.3.5 MD membrane modules and designs 17.4 Membrane materials for MD 17.5 Characteristics of MD membrane 17.5.1 Liquid entry pressure 17.5.2 Membrane thickness 17.5.3 Pore size and pore size distribution 17.5.4 Porosity and tortuosity of membrane 17.5.5 Mechanical properties 17.5.6 Thermal conductivity 17.6 Operational parameters in membrane distillation 17.6.1 Feed temperature 17.6.2 Flow rate 17.6.3 Feed concentration 17.6.4 Air gap and long operation 17.6.5 Membrane type 17.7 Fouling and wetting phenomena 17.8 Prevention methods of fouling and wetting 17.9 Temperature and concentration polarization 17.10 Applications of membrane distillation 17.11 Economics and energy consumption of membrane distillation 17.12 Conclusion and future directions in membrane distillation Acknowledgments References Index