دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Palanisamy MohanKumar, Krishnamoorthi Sivalingam, Teik-Cheng Lim سری: ISBN (شابک) : 9789811272486, 9789811272509 ناشر: World Scientific Publishing سال نشر: 2023 تعداد صفحات: 537 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced Wind Turbines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توربین های بادی پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
توربینهای بادی پیشرفته اطلاعات دقیقی را ارائه میدهند که اهمیت عملی زیادی برای متخصصان توربینهای بادی از ایالتهای شهرهای کوچک و شلوغ دارد، جایی که کمبود زمین وسیع و سرعت باد زیاد باعث میشود توربین بادی معمولی کارایی کمتری داشته باشد. توربینهای بادی Darrieus و Savonius و همچنین نسخه هیبریدی آنها که مفاهیم اولیه، مدلسازی محاسباتی و پیشرفتهای اخیر در بهینهسازی تجربی را در بر میگیرد نیز مورد بحث قرار گرفتهاند، و دینامیک شناور در مقابل توربینهای بادی زمیندار به طور کامل توضیح داده شدهاند. برای کمک به پزشکان در دستیابی به مدل سازی عملکرد دقیق تر\\\"--
\"Advanced Wind Turbines provides detailed information that is of great practical importance to wind turbine practitioners from small and congested city-states, where the lack of vast land and high wind speed render the conventional wind turbine less effective. It introduces the non-conventional Darrieus and Savonius wind turbines, as well as their hybrid version, covering basic concepts, computational modelling and recent advances in experimental optimization. Floating offshore wind turbines are also discussed, and the dynamics of floating vis-à-vis grounded wind turbines are thoroughly expounded upon to aid practitioners in achieving more accurate performance modelling\"--
Contents Preface About the Authors Chapter 1 Introduction 1.1 A Case for H-Darrieus Wind Turbine 1.2 Overview of Floating Offshore Wind Turbine References Chapter 2 State-of-the-art Technologies for Low Wind Speed Operation 2.1 Types of Wind Turbine 2.2 Aerodynamics of Darrieus Rotor* 2.2.1 Tip-speed Ratio and Angle of Attack 2.2.2 Dynamic Stall 2.2.3 Aerodynamic Models 2.2.3.1 Cascade Model 2.2.3.2 Vortex Model 2.2.3.3 Single Streamtube Model 2.2.3.4 Multiple Streamtube Model 2.2.3.5 Double Multiple Streamtube Model 2.3 Aerodynamics of Savonius Rotor 2.3.1 Effect of Aspect Ratio 2.3.2 Effect of End Plates 2.3.3 Effect of Overlap Ratio 2.3.4 Effect of Number of Blades 2.3.5 Effect of Multi-Staging 2.3.6 Effect of Accessories 2.3.7 Effect of Blade Shape 2.3.8 Effect of Reynolds Number 2.3.9 Effect of Tip-speed Ratio 2.4 State-of-the-art Technologies for Starting and Low Wind Speed Operation* 2.4.1 Airfoil Characteristics 2.4.1.1 WSU 0015 2.4.1.2 NACA 00XX 2.4.1.3 SAND 00XX/XX 2.4.1.4 TWT 11215-1 2.4.1.5 NACA 6 Series 2.4.1.6 ARC Series 2.4.1.7 DU 06-W-200 2.4.1.8 LS-0417 2.4.1.9 S1210 2.4.1.10 NTU-20-V 2.4.2 Camber and Symmetric Airfoils 2.4.3 Solidity 2.4.4 Helical Blades 2.4.5 Blade Thickness 2.4.6 Vortex Generators 2.4.7 Stepped Airfoils 2.4.8 Gurney Flaps 2.4.9 Trailing Edge Flaps 2.4.10 J-Blade 2.4.11 Hybrid Savonius-Darrieus Rotor 2.4.12 Radial Arms with Drag Device 2.4.13 Double Darrieus Rotor 2.4.14 Low Resistance Bearings 2.4.15 Multi-Stage Rotor 2.4.16 Diffuser-Augmented Turbines 2.4.17 Generator Starting 2.4.18 Aspect Ratio 2.4.19 Circulation-Controlled Blades 2.4.20 Morphing Blades 2.4.21 Blade Pitching 2.4.22 Omnidirectional Guide Vanes 2.4.23 Trailing Edge Cavity Airfoil References Chapter 3 Feasibility Check on Potential Concepts 3.1 ERIAN Subsonic Wind Tunnel 3.1.1 Instrumentation 3.1.2 Data Reduction and Blockage Correction 3.2 Airfoil with Step (KF-N-21)* 3.2.1 Design of KF-N-21 Airfoil 3.2.2 Computational Optimization of KF-N-21 Airfoil 3.2.3 Discussion on the KF-N-21 Airfoil Computational Results 3.2.4 Experimental Setup and Procedure for KF-N-21 Airfoil 3.2.4.1 Power Coefficient 3.2.4.2 Static Torque Coefficient 3.3 Dual Darrieus Rotor 3.3.1 Description of Dual Darrieus Rotor 3.3.2 Experimental Setup and Procedure for Dual Darrieus Rotor 3.3.3 Coefficient of Power 3.4 Modified Trailing Edge Airfoil 3.4.1 Design of NACA 0018TC-39 Airfoil 3.4.2 Computational Optimization of Truncation Parameters 3.4.2.1 Lift and Drag Characteristics 3.4.3 Experimental Setup and Procedure for NACA 0018TC-39 Airfoil 3.4.3.1 Power Coefficient 3.4.3.2 Static Torque Coefficient 3.5 Hybrid Darrieus Telescopic Savonius Turbine 3.5.1 Description of Hybrid Darrieus Telescopic Savonius Turbine 3.5.2 Analytical Modeling of Telescopic Savonius Turbine 3.5.3 Computational Optimization of Telescopic Savonius Turbine Buckets 3.5.4 Discussion on Computational Results of Telescopic Savonius Turbine Buckets 3.5.5 Experimental Study on Telescopic Savonius Turbine 3.5.6 Dynamic Performance of Telescopic Savonius Turbine 3.5.7 Static Performance of Telescopic Savonius Turbine 3.5.8 Thrust Load 3.5.9 Experimental Study on Hybrid Darrieus Telescopic Savonius Turbine 3.5.10 Dynamic Performance of the Hybrid Darrieus Telescopic Savonius Rotor Chapter Nomenclature References Chapter 4 Mathematical Modeling of Adaptive Hybrid Darrieus Turbine 4.1 Introduction to Adaptive Hybrid Darrieus Turbine 4.2 Analytical Model of Adaptive Hybrid Darrieus Turbine in Open Configuration (Open Savonius) 4.2.1 Wake of Savonius Rotor in Open Configuration (Conventional Two-Bucket Savonius Rotor) 4.2.1.1 Analytical Model 4.3 Analytical Model of Adaptive Hybrid Darrieus Turbine in Closed Configuration (Cylinder) 4.3.1 Wake of Savonius Rotor in Closed Configuration (Cylinder) 4.3.1.1 Analytical Model 4.4 Discussion on Analytical Predictions 4.4.1 Parametric Study 4.4.2 Blade Torque and Rotor Torque 4.4.3 Power Coefficient and Torque Coefficient Chapter Nomenclature References Chapter 5 Computational Study of Adaptive Hybrid Darrieus Turbine 5.1 Mathematical Formulation of the Computational Fluid Dynamics 5.1.1 Reynolds-Averaged Navier Stokes Model 5.1.2 Turbulence Model 5.2 Computational Domain and Meshing 5.2.1 Numerical Model Validation 5.3 Discussion on Computational Results 5.3.1 Torque Coefficient Comparison for Different DR /DT 5.3.2 Power Coefficient Comparison for Different DR /DT 5.3.2.1 Power Coefficient Comparison for Rotor Solidity (s = 0.5) 5.3.2.2 Power Coefficient Comparison for Rotor Solidity (s = 0.75) 5.3.3 Comparison of DR /DT for Various Re 5.3.3.1 At Rotor Solidity of σ = 0.5 5.3.3.2 At Rotor Solidity of σ = 0.75 5.3.4 Discussion on Flow Physics of Adaptive Hybrid Darrieus Turbines Chapter Nomenclature References Chapter 6 Experimental Optimization of Adaptive Hybrid Darrieus Turbine 6.1 Experimental Setup and Wind Tunnel Models 6.2 Adaptive Hybrid Darrieus Turbine in Closed Configuration — Two-Bladed (σ = 0.5) 6.3 Adaptive Hybrid Darrieus Turbine in Closed Configuration — Three-Bladed (σ = 0.75) 6.3.1 Cp Comparison of Savonius Rotor for Various DT 6.3.2 Cp Comparison of Adaptive Hybrid Darrieus Turbine in Open Configuration for Various DR/DT 6.3.3 Cp Comparison of DR/DT = 3.5 for Various Configurations 6.3.4 Cp Comparison of DR/DT = 3 for Various Configurations 6.4 Starting Torque Comparison of Optimum Adaptive Hybrid Darrieus Turbine with H-Rotor Chapter Nomenclature Chapter 7 Overview of Floating Offshore Wind Turbines 7.1 Floating Offshore Wind Turbine 7.1.1 Overview of Wind Energy 7.1.2 Offshore Wind Energy 7.1.3 Floating Offshore Wind Sector Forecast 7.1.4 Floating Platform Configuration 7.1.4.1 Spar-Type Floating Wind Turbine 7.1.4.2 Tension-Leg Platform Type 7.1.4.3 Semi-Submersible Type 7.2 Prediction of Aerodynamic Performance of Floating Offshore Wind Turbines 7.2.1 Aero-Servo-Elastic Method 7.2.1.1 BEM Method 7.2.1.2 Tip-Loss Model 7.2.1.3 Glauert Correction 7.2.2 Computational Fluid Dynamics 7.2.2.1 Turbulence Model for Reynolds-Averaged Navier-Stokes Equations 7.2.2.2 Standard k−ε Model 7.2.2.3 Re-Normalization Group k−ε Model 7.2.2.4 Realizable k−ε Model 7.2.2.5 Shear Stress Transport k−ω Model 7.2.2.6 Discretization Methods 7.2.3 Vortex Lattice Method 7.3 Scaled Rotor Design and Unsteady Experimentation 7.3.1 Floating Offshore Wind Turbine Scaled Model Evaluation 7.3.2 Floating Offshore Wind Turbine Rotor-Scaling Methodology and Application 7.3.2.1 Direct Aerofoil Replacement Methodology 7.3.2.2 Geometrically Free Rotor Design Methodology 7.3.2.3 Scaling Methodology Evaluation 7.4 Remaining Useful Life Prediction of Floating Offshore Wind Turbine Power Converter 7.4.1 Wind Farm Operation and Maintenance 7.4.2 Why Predictive Over Condition-Based Maintenance? 7.4.3 Power Converter 7.4.4 Investigation on Converter Failures 7.4.5 Studies Pertaining to Temperature-Related Failures in Power Converters 7.4.6 Proposal Summary: Remaining Useful Life Estimation Model of Power Converter 7.4.6.1 FAST Capabilities — Generator Model in FAST 7.4.6.2 Squirrel Cage Induction Generator 7.4.6.3 Wind Turbine Specification 7.4.6.4 Power Converter as Integrated Power Modules 7.4.6.5 Thermal Analysis of Power Semiconductor Converters References Chapter 8 Aerodynamic Analysis of Floating Offshore Wind Turbine 8.1 NREL 5MW Wind Turbine Details 8.2 General Aerodynamic Analysis of Floating Offshore Wind Turbines 8.3 OC3 Phase IV Case 5.1 — with Normal Sea State 8.3.1 Benchmark Simulation Scenarios for FAST 8.3.2 Methodology 8.3.3 Induction Factors 8.3.4 Elemental Torque and Thrust 8.3.5 Computational Fluid Dynamics- and FAST-Based Induction Factors 8.3.6 Computational Fluid Dynamics Simulation Scenarios 8.3.7 Results and Discussion 8.3.7.1 Comparison of Axial and Tangential Induction Factors 8.4 OC3 Phase IV Case 5.1 — with Theoretical Sea State for Turbulent State Operating Condition Assessment 8.4.1 Introduction 8.4.2 Methodology and Approach 8.4.3 FAST Simulation Scenario for Computational Fluid Dynamics Simulation 8.4.4 Coupled Dynamic Mesh Motion in Computational Fluid Dynamics 8.4.5 Transient Motion Pitching Results 8.4.6 Comparison of Rotor Power in High Wave Elevation Pitching References Chapter 9 Numerical Validation of Floating Offshore Wind Turbine Scaled Rotor for Surge Motion 9.1 Introduction 9.2 Scaled Rotor for Unsteady Aerodynamic Experiments 9.2.1 Experimental Design of Surge Motion 9.3 Numerical Methodology 9.3.1 Computational Fluid Dynamics Model 9.3.2 LR-AeroDyn Model for Unsteady Experimental Scenario 9.3.2.1 FAST Model Settings 9.3.3 LR-uBEM Model for Unsteady Experimental Scenario 9.4 Results and Discussion of Unsteady State Test Cases 9.4.1 Hydrodynamic Thrust 9.4.2 Hydrodynamic Torque Comparison 9.4.3 Evaluation of Wind Turbine Operating State References Appendix A1 Appendix A2 Chapter 10 Remaining Useful Life Prediction 10.1 Introduction 10.2 Offshore Wind Turbine Power Converter — Thermal Fatigue Loading Cycle-Based Remaining Useful Life Prediction 10.2.1 Thermal Loads due to Environmental Conditions 10.2.2 Thermal Loads due to Mechanical Systems of Wind Turbine 10.2.3 Thermal Loads due to Electrical Systems of Wind Turbine 10.3 Physics-based Remaining Useful Life Prediction Methodology 10.3.1 Integrated LR-Aerodyn and LR-uBEM Elastic Servo Control Code 10.3.2 Python-based Induction Generator Model 10.3.3 Python-based Power Loss Prediction Model 10.3.4 Python-based Thermal Model for Junction and Case Temperature Prediction 10.3.5 Python-based Rain Flow Counting Method 10.4 Digital Twin Platform References Chapter 11 Concluding Remarks 11.1 Summary of Darrieus Rotor Characteristics 11.1.1 Feasibility Check on Four Innovative Concepts 11.1.2 Computational and Experimental Studies 11.1.3 Analysis on Discrepancies between Computational Predictions and Experimental Measurements 11.2 Potential Progress of Darrieus Turbines 11.2.1 Design Feasibility of 1 kW Hybrid Darrieus Telescopic Savonius Rotor 11.2.2 Field Test Comparison of Adaptive Hybrid Darrieus Turbine Configuration 11.2.3 Optimization of Darrieus and Savonius Rotors for Adaptive Hybrid Darrieus Turbines 11.3 Recommendations 11.3.1 Improvements on Aerodynamic Model 11.3.2 Three-dimensional Computational Study 11.4 Summary of Floating Offshore Wind Turbines 11.5 Aerodynamic Analysis of Full-Scale 5MW NREL-Based Floating Offshore Wind Turbine 11.6 Numerical Validation of Scaled Floating Offshore Wind Turbine Rotor 11.7 Methodology Development and Implementation of Remaining Useful Life for Floating Offshore Wind Turbine Power Converter Index