دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Vito Lancellotti
سری: The ACES Series on Computational and Numerical Modelling in Electrical Engineering
ISBN (شابک) : 1839535687, 9781839535680
ناشر: Scitech Publishing
سال نشر: 2022
تعداد صفحات: 568
[569]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Advanced Theoretical and Numerical Electromagnetics, Volume 2: Field representations and the Method of Moments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الکترومغناطیس نظری و عددی پیشرفته، جلد 2: نمایش میدانی و روش لحظه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This comprehensive and self-contained resource conveniently combines advanced topics in electromagnetic theory, a high level of mathematical detail, and the well-established ubiquitous Method of Moments applied to the solution of practical wave-scattering and antenna problems formulated with surface, volume, and hybrid integral equations.
Originating from the graduate-level electrical engineering course that the author taught at the Technical University of Eindhoven (NL) from 2010 to 2017 this well-researched two-volume set is an ideal tool for self-study. The subject matter is presented with clear, engaging prose and explanatory illustrations in logical order. References to specialized texts are meticulously provided for the readers who wish to deepen and expand their mastery of a specific topic.
This book will be of great interest to graduate students, doctoral candidates and post-docs in electrical engineering and physics, and to industry professionals working in areas such as design of passive microwave/optical components or antennas, and development of electromagnetic software. Thanks to the detailed mathematical derivations of all the important theoretical results and the numerous worked examples, readers can expect to build a solid and structured knowledge of the physical, mathematical, and computational aspects of classical electromagnetism.
Volume 1 covers fundamental notions and theorems, static electric fields, stationary magnetic fields, properties of electromagnetic fields, electromagnetic waves and finishes with time-varying electromagnetic fields.
Volume 2 starts with Integral formulas and equivalence principles, the moves to cover spectral representations of electromagnetic fields, wave propagation in dispersive media, integral equations in electromagnetics and finishes with a comprehensive explanation of the Method of Moments.
Cover Contents List of figures List of tables List of examples About the author Foreword Preface Acknowledgements 10 Integral formulas and equivalence principles 10.1 Integral representations with dyadic Green functions 10.2 The integral formulas of Stratton and Chu 10.3 Integral formulas with Kottler’s line charges 10.4 Surface equivalence principles 10.4.1 The Huygens and Love equivalence principles 10.4.2 The Schelkunoff equivalence principle 10.5 Volume equivalence principle 10.6 The equivalent circuit of an antenna 10.6.1 Antenna port connected to a coaxial cable 10.6.2 Antenna port modelled with the delta-gap approximation References 11 Spectral representations of electromagnetic fields 11.1 Modal expansion in cavities 11.1.1 Vector eigenvalue problems in cavities 11.1.2 Solenoidal modes 11.1.3 Lamellar modes 11.1.4 Orthogonality properties of the cavity eigenfunctions 11.1.5 Stationarity of the Rayleigh quotient 11.1.6 Completeness of the cavity eigenfunctions 11.1.7 Equivalent sources on a cavity boundary 11.2 Modal expansion in uniform cylindrical waveguides 11.2.1 The Marcuvitz-Schwinger equations 11.2.2 Transverse-magnetic modes 11.2.3 Transverse-electric modes 11.2.4 Transverse-electric-magnetic modes 11.2.5 Orthogonality properties of the transverse eigenfunctions 11.2.6 Sources in waveguides 11.3 Wave propagation in periodic structures 11.3.1 Periodic boundary conditions 11.3.2 Bloch modes in a periodic layered medium 11.4 Sources and fields invariant in one spatial dimension 11.4.1 Two-dimensional TM and TE decomposition 11.4.2 The two-dimensional Helmholtz equation 11.4.3 Reflection and transmission at a planar material interface References 12 Wave propagation in dispersive media 12.1 Constitutive relations in frequency and time domain 12.2 The Kramers-Krönig relations 12.3 Simple models of dispersive media 12.3.1 Conducting medium 12.3.2 Dielectric medium 12.3.3 Polar substances 12.4 Narrow-band signals in the presence of dispersion 12.5 Intra-modal dispersion in waveguides References 13 Integral equations in electromagnetics 13.1 General considerations 13.2 Surface integral equations for perfect conductors 13.2.1 Electric-field integral equation (EFIE) 13.2.2 EFIE with delta-gap excitation 13.2.3 Magnetic-field integral equation (MFIE) 13.2.4 Interior-resonance problem 13.2.5 Combined-field integral equation (CFIE) 13.2.6 A modified EFIE for good conductors 13.3 Surface integral equations for homogeneous scatterers 13.3.1 The integral equations of Poggio and Miller (PMCHWT) 13.3.2 The Müller integral equations 13.4 Volume integral equations for inhomogeneous scatterers 13.5 Hybrid formulations 13.5.1 Electric-field and volume integral equations 13.5.2 Integral and wave equations References 14 The Method of Moments I 14.1 General considerations 14.2 Discretization of the EFIE 14.3 Discretization of the MFIE 14.4 Discretization of the CFIE 14.5 Discretization of the PMCHWT equations 14.6 Discretization of the Müller equations 14.7 The basis functions of Rao,Wilton and Glisson 14.8 Area coordinates 14.9 Singular integrals over triangles 14.9.1 Integrals involving R 14.9.2 Integrals involving R/ R 14.9.3 Integrals involving R) 14.10 Discretization of the EFIE with delta-gap excitation 14.11 Scaling of solutions References 15 The Method of Moments II 15.1 Discretization of volume integral equations 15.2 The basis functions of Schaubert, Wilton and Glisson 15.3 Volume coordinates 15.4 Singular integrals over tetrahedra 15.4.1 Integrals involving R 15.4.2 Integrals involving R/ R 15.4.3 Integrals involving R) 15.4.4 Integrals involving R), a constant dyadic and R 15.5 Discretization of EFIE and volume integral equations 15.6 Discretization of integral and wave equations 15.7 Edge elements for the vector wave equation References Appendix A: Vector calculus A.1 Systems of coordinates A.1.1 Circular cylindrical coordinates A.1.2 Polar spherical coordinates A.2 Differential operators A.3 The Gauss theorem A.4 The Stokes theorem A.5 The surface Gauss theorem A.6 The Helmholtz transport theorem A.7 Estimates for vector-valued functions References Appendix B: Complex analysis B.1 Derivatives and integrals B.2 Poles and residues B.3 Branch points and Riemann surfaces References Appendix C: Dirac delta distributions C.1 Definitions and properties C.2 Derivatives and weak operators References Appendix D: Functional analysis D.1 Vector and function spaces D.2 The Bessel inequality D.3 Linear operators D.4 The Cauchy-Schwarz inequality D.5 The Riesz representation theorem D.6 Adjoint operators D.7 The spectrum of a linear operator D.8 The Fredholm alternative References Appendix E: Dyads and dyadics E.1 Scalars, vectors, and beyond E.2 Dyadic calculus E.2.1 Sum of dyadics and product with a scalar E.2.2 Scalar and vector product E.2.3 Neutral elements E.2.4 Transpose and Hermitian transpose E.2.5 Double scalar product and double vector product E.2.6 Determinant, trace and eigenvalues E.3 Differential operators References Appendix F: Properties of smooth surfaces F.1 An estimate for ˆn(r r r) F.2 Solid angle subtended at a point F.3 Points in an open neighbourhood F.4 Criterion for the Hölder continuity of scalar fields References Appendix G: A surface integral involving the time-harmonic scalar Green function G.1 Two estimates for G( r, r G.2 Finiteness and Hölder continuity References Appendix H: Formulas H.1 Vector identities and inequalities H.2 Dyadic identities H.3 Differential identities H.4 Integral identities H.5 Legendre polynomials and functions H.5.1 Nomenclature H.5.2 Differential equation H.5.3 Explicit expressions for the lowest orders H.5.4 Orthogonality relationships H.5.5 Functional relationships H.6 Bessel functions H.6.1 Nomenclature H.6.2 Differential equation H.6.3 Functional relationships H.6.4 Asymptotic behavior for small argument (|z| H.6.5 Asymptotic behavior for large argument (|z| H.6.6 Recursion relationships H.6.7 Wronskians and cross products H.6.8 Integral relationships H.6.9 Series References Index