دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ashok Srivastava (editor). Saraju P. Mohanty (editor)
سری: Materials, Circuits and Devices
ISBN (شابک) : 1785616641, 9781785616648
ناشر: The Institution of Engineering and Technology
سال نشر: 2020
تعداد صفحات: 321
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Advanced Technologies for Next Generation Integrated Circuits (Materials, Circuits and Devices) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های پیشرفته برای نسل بعدی مدارهای مجتمع () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اگرچه انتظار میرود فناوری نانومتری CMOS در دهه آینده همچنان مسلط باقی بماند، دستگاههای غیرکلاسیک جدیدی به عنوان جایگزینهای بالقوه CMOS سیلیکونی در حال توسعه هستند تا تقاضای همیشه برای سریعتر، کوچکتر و کارآمدتر برآورده شود. مدارهای یکپارچه.
بسیاری از دستگاه های جدید بر اساس مواد نوظهور جدید مانند نانولوله های کربنی یک بعدی و گرافن دو بعدی، مواد دو بعدی غیر گرافنی و دی کالکوژنیدهای فلزات واسطه ساخته شده اند. چنین دستگاههایی از عملیات روشن/خاموش مبتنی بر انتقال جریان مکانیکی کوانتومی استفاده میکنند، بنابراین طراحی و ساخت آنها نیاز به درک ساختارهای الکترونیکی مواد و فناوریها دارد. علاوه بر این، ابزارها و تکنیکهای جدید اتوماسیون طراحی الکترونیکی (EDA) باید بر اساس یکپارچهسازی دستگاهها از فناوریهای نوظهور مبتنی بر مواد ایجاد شوند.
هدف این کتاب بررسی مواد و الزامات طراحی این موارد است. فن آوری های مدار مجتمع در حال ظهور، و برای تشریح برنامه های کاربردی آینده نگر آنها. این برای دانشگاهیان و دانشمندان پژوهشی علاقمند به جهتها و پیشرفتهای آینده در طراحی، مواد و کاربردهای فناوریهای مدار مجتمع جدید، و برای متخصصان تحقیق و توسعه که در لبههای پیشرفته توسعه مدارهای مجتمع کار میکنند، مفید خواهد بود.
Although existing nanometer CMOS technology is expected to remain dominant for the next decade, new non-classical devices are being developed as the potential replacements of silicon CMOS, in order to meet the ever-present demand for faster, smaller, more efficient integrate circuits.
Many new devices are based on novel emerging materials such as one-dimensional carbon nanotubes and two-dimensional graphene, non-graphene two-dimensional materials, and transition metal dichalcogenides. Such devices use on/off operations based on quantum mechanical current transport, and so their design and fabrication require an understanding of the electronic structures of materials and technologies. Moreover, new electronic design automation (EDA) tools and techniques need to be developed based on integrating devices from emerging novel material-based technologies.
The aim of this book is to explore the materials and design requirements of these emerging integrated circuit technologies, and to outline their prospective applications. It will be useful for academics and research scientists interested in future directions and developments in design, materials and applications of novel integrated circuit technologies, and for research and development professionals working at the cutting edge of integrated circuit development.
Cover Contents 1 Graphene and other than graphene materials technology and beyond 1.1 Introduction—graphene and graphene nanoribbon 1.2 Synthesis of graphene 1.2.1 Growth of multilayer graphene film on copper 1.3 Electronic structure of graphene 1.4 Bandgap engineering of graphene 1.4.1 Energy bandgaps of GNR 1.5 GNR-based transistors, circuits, and interconnects 1.6 Doping of graphene 1.7 Other than graphene materials and beyond 1.8 Conclusion References 2 Emerging graphene-compatible biomaterials 2.1 Introduction 2.1.1 Carbon nanomaterials 2.2 Graphene synthesis and properties 2.3 Functionalization of graphene 2.4 Graphene-based nanocomposites 2.5 Advances in diagnostic sensors 2.5.1 Graphene-based field-effect transistors 2.5.2 Gas and chemical sensors 2.5.3 Magnetic and electromagnetic sensors 2.5.4 pH and temperature sensors 2.6 Advances in fabrication techniques 2.7 Advances in monitoring and therapy 2.7.1 Microfluidics 2.7.2 Wireless, portable and wearable electronics 2.8 Bio-microelectromechanical systems (MEMS) and bio-nanoelectromechanical systems (NEMS) 2.9 Advanced power sources and control systems 2.10 Bioelectronics safety References 3 Single electron devices: concept to realization 3.1 Introduction 3.1.1 Importance of single electron devices 3.1.2 Theory of single electron devices 3.1.3 Single electron transistor: principle of operation 3.1.4 Advantages, challenges, and applications 3.2 Experimental research 3.2.1 First experimental observation of single electron effects 3.2.2 Single molecular single electron transistor 3.2.3 Single atom single electron transistor 3.3 Computational research 3.3.1 SET as switching element 3.3.2 SET as sensor References 4 Application of density functional theory (DFT) for emerging materials and interconnects 4.1 Introduction 4.2 Density functional theory 4.3 Theory behind DFT 4.4 Implementation of DFT 4.5 Hybrid material modelling with DFT 4.6 Conclusion References 5 Memristor devices and memristor-based circuits 5.1 Introduction 5.1.1 Brief history of memristor 5.1.2 What is a memristor? 5.1.3 Applications of memristors 5.2 Types of memristors 5.2.1 Thin-film memristors 5.2.2 Spintronic memristors 5.3 Device structure and working of a memristor 5.3.1 Fabrication and device structure 5.4 Memristor device modeling 5.4.1 Mathematical modeling of the memristor 5.4.2 Memristor device model using Simscape® 5.4.3 SPICE memristor device model 5.4.4 Memristor device model using Verilog-A(MS) 5.4.5 Memristor emulators 5.5 Characteristics of the memristor 5.6 Memristors in analog nanoelectronics 5.6.1 Memristance controlled oscillator 5.6.2 LC-tank oscillator 5.6.3 Programmable Schmitt trigger oscillator 5.6.4 Neuromorphic chips 5.7 Memristors in digital nanoelectronics 5.7.1 Memristor-based logic gate design 5.7.2 Memristor-based full adder 5.7.3 Physical unclonable function 5.7.4 Memristor architectures for FPGAs 5.7.5 Memristor crossbar 5.8 Summary and future directions of research Acknowledgments References 6 Organic–inorganic heterojunctions for optoelectronic applications 6.1 Introduction 6.2 Experimental background 6.2.1 Mechanisms of conductivity enhancement 6.2.2 Atomic force microscopy 6.2.2.1 Kelvin probe force microscopy 6.2.2.2 Conductive atomic force microscopy 6.2.3 Sample preparation 6.3 Results and discussion 6.3.1 Thickness and morphology 6.3.2 Surface potential and work function 6.3.3 Conductivity 6.3.4 Raman spectra 6.3.5 Electrical characteristics of PEDOT: PSS/n-Si heterojunction diodes 6.3.6 Photovoltaic characteristics of PEDOT: PSS/n-Si solar cell 6.3.7 Energy band diagram 6.4 Summary Acknowledgments References 7 Emerging high-k dielectrics for nanometer CMOS technologies and memory devices 7.1 Introduction 7.2 Historical perspective and current status 7.3 Characterization of Ge/high-k devices with dry and wet interface treatment 7.4 Interface improvement and reliability of ZrO2/Al2O3/Ge gate stack 7.5 Enhancement of dielectric constant with HfZrO 7.6 Dielectric stacks for next-generation memory devices 7.7 Summary References 8 Technology and modeling of DNTT organic thin-film transistors 8.1 Introduction 8.2 Motivation 8.2.1 Potential applications of flexible organic electronics 8.3 Organic thin-film transistors (OTFTs) 8.3.1 Working principle of OTFT 8.3.2 OTFT parameter 8.4 Modeling and simulation of DNTT-based OTFT 8.4.1 Configurations of DNTT-based OTFT 8.4.2 Device physical modeling 8.4.2.1 Density of states model 8.4.2.2 Trapped carrier density 8.4.2.3 Poole–Frenkel mobility model 8.4.3 Simulation results of DNTT-based OTFT 8.5 Applications of OTFT 8.5.1 Organic light-emitting diodes (OLEDs) 8.5.2 Radio frequency identification (RFID) tags 8.5.3 DNA sensors 8.6 Conclusion Acknowledgments References 9 Doping-free tunnelling transistors – technology and modelling 9.1 Introduction 9.1.1 Scaling of threshold voltage 9.1.2 Need of slow supply voltage (VDD) scaling 9.1.3 Possible solution to the power consumption 9.2 Tunnel field-effect transistor 9.2.1 Operating principle of TFET 9.2.2 The conventional TFET limitations 9.3 DF dynamically configurable TFET 9.3.1 Device structure and simulation parameter 9.3.2 Proposed fabrication process flow 9.4 Simulation results and discussion 9.4.1 Carrier concentration and energy band diagram 9.4.2 Transfer characteristics comparison of conventional and DF-TFET 9.4.3 Output characteristics of conventional and DF-TFET 9.4.4 Impact of supply voltage and PG bias scaling on DF-TFET 9.4.5 Impact of control gate voltage on tunnelling rate and energy barrier width 9.4.6 Impact of source spacer thickness 9.4.7 Sensitivity towards control gate length scaling 9.4.8 Sensitivity towards temperature 9.4.9 Sensitivity towards oxide thickness 9.4.10 Sensitivity towards silicon thickness 9.5 Summary References 10 Tunnel junctions to tunnel field-effect transistors—technologies, current transport models, and integration 10.1 Introduction—band-to-band tunneling graphene nanoribbon tunnel FETs 10.2 Device structure and operation of GNR TFET 10.3 Current transport model 10.3.1 Semi-classical analytical model 10.3.2 Semi-quantum analytical model 10.3.3 NEGF-based numerical model: simulation method and approach 10.4 Transfer characteristics of GNR TFET 10.5 Subthreshold slope of GNR TFET 10.6 Estimation of subthreshold swing point, I60 10.7 Output characteristics of GNR TFET 10.8 Width-dependent performance analysis of GNR TFET 10.9 Voltage transfer characteristics of GNR TFET complementary inverter 10.10 Conclusion References 11 Low-dimension materials-based interlayer tunnel field-effect transistors: technologies, current transport models, and integration 11.1 Introduction 11.2 Device structure and operation 11.3 Current transport model 11.3.1 Estimation of tunneling probability 11.3.2 Estimation of charge density 11.3.3 Estimation of drain current 11.4 Performance analysis of interlayer tunneling-based graphene JTET 11.5 Voltage transfer characteristics of graphene JTET inverter 11.6 Conclusion References 12 Molybdenum disulfide–boron nitride junctionless tunnel effect transistor 12.1 Introduction 12.2 Device structure and operation 12.3 Estimation of drain current 12.4 Results and discussion 12.5 Conclusion References Index Back Cover