دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 5 نویسندگان: David Weisburd, David B. Wilson, Alese Wooditch, Chester Britt سری: ISBN (شابک) : 3030677370, 9783030677374 ناشر: Springer سال نشر: 2021 تعداد صفحات: 552 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Advanced Statistics in Criminology and Criminal Justice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار پیشرفته در جرم شناسی و عدالت کیفری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب ابزارهایی را در اختیار دانشآموز، محقق یا پزشک قرار میدهد تا بسیاری از رایجترین ابزارهای تحلیل آماری پیشرفته را که در جرمشناسی و عدالت کیفری مورد استفاده قرار میگیرند، درک کنند و همچنین آنها را در مسائل تحقیقاتی به کار ببرند.
حجم بر دو موضوع اصلی تنظیم شده است که به کاربر انعطاف پذیری می دهد تا سریعاً آنچه را که نیاز دارد پیدا کند. اولی "مدل خطی کلی" است که رویکرد تحلیلی اصلی است که برای درک اینکه چه چیزی بر نتایج در جرم و عدالت تأثیر می گذارد استفاده می شود. مجموعه ای از رویکردها از رگرسیون چند متغیره OLS، از طریق رگرسیون لجستیک و رگرسیون چند اسمی، رگرسیون سلسله مراتبی، برای شمارش رگرسیون ارائه می کند. این جلد همچنین روشهای جایگزین برای تخمین نتایج بیطرفانه را که در جرمشناسی و عدالت کیفری رایجتر میشوند، از جمله تجزیه و تحلیل آزمایشهای تصادفیسازیشده و تطبیق امتیاز تمایل، بررسی میکند. همچنین مشکل قدرت آماری و چگونگی استفاده از آن برای مطالعات طراحی بهتر را بررسی می کند. در نهایت، متا آنالیز را مورد بحث قرار می دهد که برای خلاصه کردن مطالعات استفاده می شود. و تجزیه و تحلیل آماری جغرافیایی، که به ما امکان می دهد راه هایی را که در آن جغرافیاها ممکن است بر نتایج آماری ما تأثیر بگذارند، در نظر بگیریم.
This book provides the student, researcher or practitioner with the tools to understand many of the most commonly used advanced statistical analysis tools in criminology and criminal justice, and also to apply them to research problems.
The volume is structured around two main topics, giving the user flexibility to find what they need quickly. The first is “the general linear model” which is the main analytic approach used to understand what influences outcomes in crime and justice. It presents a series of approaches from OLS multivariate regression, through logistic regression and multi-nomial regression, hierarchical regression, to count regression. The volume also examines alternative methods for estimating unbiased outcomes that are becoming more common in criminology and criminal justice, including analyses of randomized experiments and propensity score matching. It also examines the problem of statistical power, and how it can be used to better design studies. Finally, it discusses meta analysis, which is used to summarize studies; and geographic statistical analysis, which allows us to take into account the ways in which geographies may influence our statistical conclusions.
Contents Chapter 1: Introduction Proportionality Review and the Supreme Court of New Jersey: A Cautionary Tale Generalized Linear Models Special Topics References Chapter 2: Multiple Regression Overview of Simple Regression Extending Simple Regression to Multiple Regression Assumptions of Multiple Regression Independence Normally Distributed Errors Homoscedasticity of Errors Linearity Measurement Error in the Independent Variables Regression Diagnostics Dealing with Outliers and Influential Cases Testing the Significance of Individual Regression Coefficients Assessing Overall Model Fit and Comparing Nested Models R2 and Adjusted R2 Comparing Regression Coefficients Within a Single Model: The Standardized Regression Coefficient Correctly Specifying the Regression Model Model Specification and Building An Example of a Multiple Regression Model Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises SPSS Standardized Regression Coefficients (Betas) F-Test for a Subset of Variables Residual Plot Stata Standardized Regression Coefficients (Betas) F-Test for a Subset of Variables Residual Plot R Standardized Regression Coefficients (Betas) F-Test for a Subset of Variables Residual Plot Problems References Chapter 3: Multiple Regression: Additional Topics Nominal Variables with Three or More Categories in Multiple Regression Nonlinear Relationships Finding a Nonlinear Relationship: Graphical Assessment Incorporating Nonlinear Relationships into an OLS Model Using a Quadratic Term of an Independent Variable Interpreting Nonlinear Coefficients Note on Statistical Significance Transforming the Dependent Variable Review of Nonlinear Relationships Interaction Effects Interaction of a Dummy Variable and a Scaled Variable An Example: Race and Punishment Severity Interaction Effects Between Two Scaled Variables An Example: Punishment Severity The Problem of Multicollinearity Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises SPSS Dummy Coding Nominal Variables Computing Nonlinear and Interaction Terms Nonlinear Terms Interaction Terms Estimating the Regression Model Collinearity Diagnostics Stata Dummy Coding Nominal Variables Computing Nonlinear and Interaction Terms Nonlinear Terms Interaction Terms Estimating the Regression Model Collinearity Diagnostics R Dummy Coding Nominal Variables Computing Nonlinear and Interaction Terms Nonlinear Terms Interaction Terms Estimating the Regression Model Collinearity Diagnostics Problems References Chapter 4: Logistic Regression Why Is It Inappropriate to Use OLS Regression for a Dichotomous Dependent Variable? Logistic Regression A Substantive Example: Adoption of Compstat in U.S. Police Agencies Interpreting Logistic Regression Coefficients The Odds Ratio The Derivative at Mean Comparing Logistic Regression Coefficients Using Probability Estimates to Compare Coefficients Standardized Logistic Regression Coefficients Evaluating the Logistic Regression Model Percent of Correct Predictions Pseudo-R2 Statistical Significance in Logistic Regression Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises SPSS Stata R Problems References Chapter 5: Multiple Regression with Multiple Category Nominal or Ordinal Measures Multinomial Logistic Regression A Substantive Example: Case Dispositions in California The Missing Set of Coefficients Statistical Inference Single Coefficients Multiple Coefficients Overall Model A Concluding Observation About Multinomial Logistic Regression Models Ordinal Logistic Regression Interpretation of Ordinal Logistic Regression Coefficients Substantive Example: Severity of Punishment Decisions Interpreting the Coefficients Statistical Significance Parallel Slopes Tests Score Test Brant Test Partial Proportional Odds Severity of Punishment Example Chapter Summary Key Terms Formulas Exercises Computer Exercises SPSS Multinomial Logistic Regression Ordinal Logistic Regression Stata Multinomial Logistic Regression Ordinal Logistic Regression Partial Proportional Odds R Multinomial Logistic Regression Ordinal Logistic Regression Partial Proportional Odds Problems References Chapter 6: Count-Based Regression Models The Poisson Distribution Poisson Regression Incident Rate Ratios (IRRs) Significance Testing Exposure and Offsets An Example: California 1999 Uniform Crime Report Data Over-Dispersion in Count Data Quasi-Poisson and Negative Binomial Regression An Example: Reanalysis of the California 1999 Uniform Crime Report Data Zero-Inflated Poisson and Negative Binomial Regression Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises SPSS Poisson Regression Quasi-Poisson Regression Negative Binomial Regression Zero-Inflated Poisson/Negative Binomial Regression Stata Poisson Regression Quasi-Poisson Regression Negative Binomial Regression Zero-Inflated Poisson/Negative Binomial Regression R Poisson Regression Quasi-Poisson Regression Negative Binomial Regression Zero-Inflated Poisson/Negative Binomial Regression Problems References Chapter 7: Multilevel Regression Models A Simple Multilevel Model Fixed-Effects and Random-Effects A Substantive Example: Bail Decision-Making Study Intraclass Correlation and Explained Variance Deciding Between and Fixed- and Random-Effects Model Statistical Significance Bail Decision-Making Study Random Intercept Model with Fixed Slopes Statistical Significance Centering Independent Variables Bail Decision-Making Study Between and Within Effects Testing for Between and Within Effects Bail Decision-Making Study Random Coefficient Model Variance Estimates Bail Decision-Making Study Adding Cluster (Level 2) Characteristics A Substantive Example: Race and Sentencing Across Pennsylvania Counties Multilevel Negative Binomial Regression Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises SPSS Stata Random Intercept Models Random Coefficient Models R Random Intercept Models Random Coefficient Models Problems References Chapter 8: Statistical Power Statistical Power Setting the Level of Statistical Power Components of Statistical Power Statistical Significance and Statistical Power Directional Hypotheses Sample Size and Statistical Power Effect Size and Statistical Power Estimating Statistical Power and Sample Size for a Statistically Powerful Study Difference of Means Test ANOVA Correlation Least Squares Regression Summing Up: Avoiding Studies Designed for Failure Chapter Summary Key Terms Symbols and Formulas Computer Exercises Stata Two-Sample Difference of Means Test ANOVA Correlation OLS Regression R Two-Sample Difference of Means Test ANOVA Correlation OLS Regression Problems References Chapter 9: Randomized Experiments The Structure of a Randomized Experiment The Main Advantage of Experiments: Isolating Causal Effects Internal Validity Selected Design Types and Associated Statistical Methods The Two-Group Randomized Design Three or More Group Randomized Design Factorial Design Two-Way ANOVA for Between-Subjects Designs An Example: Perceptions of Children During a Police Interrogation Mixed Within- and Between-Subjects Factorial Designs Block Randomized Designs Block Randomization and Statistical Power Examining Interaction in a Block Randomized Experiment Using Covariates to Increase Statistical Power in Experimental Studies Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises SPSS Independent Sample t-Test One-Way ANOVA Two-Way Factorial (Type I SS) Two-Way Factorial (Type II SS) Two-Way Factorial (Type III SS) Stata Independent Sample t-Test One-Way ANOVA Two-Way Factorial (Type I SS) Two-Way Factorial (Type II SS) Two-Way Factorial (Type III SS) R Independent Sample t-Test One-Way ANOVA Two-Way Factorial (Type I SS) Two-Way Factorial (Type II SS) Two-Way Factorial (Type III SS) Problems References Chapter 10: Propensity Score Matching The Underlying Logic Behind Propensity Score Matching Selection of Model for Predicting Propensity for Treatment Matching Methods The Case of Work Release in Prison: A Substantive Example Assessing the Quality of the Matches Sensitivity Analysis for Average Treatment Effects Limitations of Propensity Score Matching Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises Stata Estimating Propensity Score Matching Cases Assessing Matches Estimating Treatment Effect R Estimating Propensity Score Matching Cases Assessing Matches Estimating Treatment Effect Problems References Chapter 11: Meta-analysis A Historical Note The Logic of Meta-analysis The Effect Size The Standardized Mean Difference: Cohen´s d and Hedges´ g Risk Ratio Odds Ratio Correlation Coefficient Converting Between Effect Size Indices Converting Effect Sizes into Cohen´s d Converting Effect Sizes into Odds Ratios Converting Effect Sizes into Risk Ratios Converting Effect Sizes into Correlations Meta-analysis of Effect Sizes Fixed-Effect Meta-analysis The Mean Effect Size and Associated Statistics Homogeneity Testing The Random-Effect Model Example: Police-Led Diversion of Youth Forest Plots Moderator Analysis Analog-to-the-ANOVA Moderator Analysis Example Analog-to-the-ANOVA Moderator Analysis: Police-Led Diversion of Youth Meta-regression Moderator Analysis Example Meta-regression Moderator Analysis: Restorative Justice Programs for Youth Handling Statistically Dependent Effect Sizes: Robust Standard Errors Publication Selection Bias Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises SPSS Stata R Problems References Chapter 12: Spatial Regression Why Can´t We Use OLS Regression with Spatial Data? How Do We Define Spatial Relationships? What Is Spatial Regression? What Is a Spatial Lag Model? What Is a Spatial Error Model? Which Type of Spatial Regression Should I Use? Assess Spatial Autocorrelation Which Type of Spatial Regression Model Should I Conduct? Spatial Regression Example Step 1: Conduct OLS Regression Step 2: Construct a Spatial Weights Matrix Step 3: Test for Spatial Autocorrelation Step 4: Select and Conduct Spatial Regression Model Chapter Summary Key Terms Symbols and Formulas Exercises Computer Exercises R OLS Regression Visualize OLS Regression Residuals Spatially Distance-Based Spatial Weights Matrix Contiguity-Based Spatial Weights Matrix Moran´s I Test of Residuals Lagrange Multiplier Diagnostics Spatial Lag/Error Regression Problems References Glossary Index