دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Rashmi Gupta, Arun Kumar Rana Sachin Dhawan, Korhan Cengiz سری: Innovations in Multimedia, Virtual Reality and Augmentation ISBN (شابک) : 1032117370, 9781032117379 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 380 [381] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 117 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced Sensing in Image Processing and IoT به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سنجش پیشرفته در پردازش تصویر و اینترنت اشیا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب جهتهای تحقیقاتی آینده را در حوزه انرژی، صنعت، و مراقبتهای بهداشتی مبتنی بر اینترنت اشیا و پردازش تصویر ارائه میکند و کاربردهای مختلف فناوریهای مرتبط با آن را بررسی میکند. با این حال، اینترنت اشیاء و پردازش تصویر حوزه بسیار بزرگی است که زیرشاخه های زیادی دارد که از جمله خانه های هوشمند برای بهبود زندگی روزمره، شهرهای هوشمند برای بهبود زندگی شهروندان، شهرک های هوشمند برای بازیابی زیست پذیری و ... بسیار مهم هستند. سنت ها، زمین هوشمند برای محافظت از جهان ما، و اینترنت صنعتی اشیا برای ایجاد مشاغل ایمن تر و آسان تر. این کتاب حوزههای تحقیقاتی بسیار مهمی در حوزه انرژی، صنعت و بهداشت و درمان با کاربردهای اینترنت اشیا و پردازش تصویر را در نظر میگیرد. هدف کتاب برجسته کردن جهتهای آینده روشهای بهینهسازی در کاربردهای مختلف مهندسی و علمی در کاربردهای مختلف اینترنت اشیا و پردازش تصویر است. تاکید بر یادگیری عمیق و مدلهای مشابه تکنیکهای یادگیری مبتنی بر شبکههای عصبی که در حل مسائل بهینهسازی کاربردهای مختلف مهندسی و علمی به کار میروند، داده میشود. نقش هوش مصنوعی در مکاترونیک نیز با استفاده از روشهای بهینهسازی مناسب برجسته میشود. این کتاب حوزه های تحقیقاتی بسیار مهمی را در زمینه انرژی، صنعت و مراقبت های بهداشتی در نظر می گیرد. این به مسائل و چالشهای عمده در انرژی، صنعت، و مراقبتهای بهداشتی و راهحلهای پیشنهادی برای شبکههای سلولی/کامپیوتری مجهز به اینترنت اشیا، پروتکلهای مسیریابی/ارتباطات، برنامههای نظارتی، مدیریت دادههای ایمن و رویکردهای موقعیتیابی میپردازد. این عمدتا بر روی پیاده سازی های هوشمند و آگاه از زمینه تمرکز دارد.
ویژگی های کلیدی قایقرانی:
< /p>
The book provides future research directions in IoT and image processing based Energy, Industry, and Healthcare domain and explores the different applications of its associated technologies. However, the Internet of Things and image processing is a very big field with a lot of subfields, which are very important such as Smart Homes to improve our daily life, Smart Cities to improve the citizens' life, Smart Towns to recover the livability and traditions, Smart Earth to protect our world, and Industrial Internet of Things to create safer and easier jobs. This book considers very important research areas in Energy, Industry, and Healthcare domain with IoT and image processing applications.The aim of the book to highlights future directions of optimization methods in various engineering and science applications in various IoT and image processing applications. Emphasis is given to deep learning and similar models of neural network-based learning techniques employed in solving optimization problems of different engineering and science applications. The role of AI in mechatronics is also highlighted using suitable optimization methods. This book considers very important research areas in Energy, Industry, and Healthcare. It addresses major issues and challenges in Energy, Industry, and Healthcare and solutions proposed for IoT-enabled cellular/computer networks, routing/communication protocols, surveillances applications, secured data management, and positioning approaches. It focuses mainly on smart and context-aware implementations.
Key sailing Features:
Cover Half Title Series Page Title Page Copyright Page Table of Contents Editors Contributors Chapter 1 Machine Learning–Based Early Fire Detection System Using a Low-Cost Drone 1.1 Introduction 1.1.1 Motivation 1.2 Materials and Methods 1.2.1 Software Design 1.3 Results 1.4 Conclusions Acknowledgments Conflicts of Interest References Chapter 2 Computer Vision: Practical Approach to Facial Detection Techniques for Security Applications 2.1 Introduction 2.2 Facial Detection 2.3 Facial Detection Techniques 2.3.1 Haar Cascade Classifier 2.3.2 MMOD Face Detector 2.3.3 HOG Face Detector 2.3.4 MTCNN Face Detector 2.3.5 DNN Face Detector 2.4 Results and comparative analysis 2.4.1 Count of Detected Faces and Their Time Analysis 2.4.2 Confusion Matrix 2.4.3 Other Evaluation Parameters 2.4.4 Comparative Analysis 2.5 Conclusion References Chapter 3 Image Segmentation: Classification and Implementation Techniques 3.1 Introduction 3.2 How Image Segmentation Works 3.3 Applications of Digital Image Processing 3.3.1 Image Sharpening and Restoration 3.3.2 Medical Field 3.3.2.1 Ultraviolet Imaging 3.3.2.2 Transmission and Encoding 3.3.2.3 Machine/Robot Vision 3.3.2.4 Obstacle Detection 3.3.2.5 Line Follower Robot 3.3.2.6 Color Processing 3.3.2.7 Pattern Recognition 3.3.2.8 Video Processing 3.4 Requirement for Image Segmentation 3.4.1 Face Recognition 3.4.2 Number Plate Identification 3.4.3 Image-Based Search 3.4.4 Medical Imaging 3.5 Types of Image Segmentation 3.5.1 Approach-Based Classification 3.5.1.1 Region-Based Approach (Similarity Detection) 3.5.1.2 Boundary-Based Approach (Discontinuity Detection) 3.5.2 Technique-Based Classification 3.5.2.1 Structural Techniques 3.5.2.2 Stochastic Techniques 3.5.2.3 Combined/Hybrid Techniques 3.6 Image Segmentation Techniques 3.6.1 Thresholding Segmentation 3.6.1.1 Simple Thresholding 3.6.1.2 Otsu’s Binarization 3.6.1.3 Adaptive Thresholding 3.6.2 Edge-Based Segmentation 3.6.2.1 Search-Based Edge Detection 3.6.2.2 Zero Crossing–Based Edge Detection 3.6.3 Region-Based Segmentation 3.6.3.1 Region Growing 3.6.3.2 Region Splitting and Merging 3.6.4 Watershed Segmentation 3.6.5 Clustering-Based Segmentation Algorithms 3.6.5.1 K-Means Clustering 3.6.5.2 Fuzzy C Means 3.6.6 Neural Networks for Segmentation 3.7 Implementation and Pre-Requisites 3.8 Future Scope 3.9 Conclusion References Chapter 4 Image Processing with IoT for Patient Monitoring 4.1 Introduction 4.2 IoT in the Medical Domain 4.2.1 Data Communication between Different Layers in IoT 4.2.1.1 Internet of Healthcare Things (IoHT) Network Layer 4.2.1.2 Fog Computing Layer 4.2.1.3 Communication Interface 4.2.1.4 Cloud Layer 4.3 Application Areas of Medical IoT 4.3.1 Patient Monitoring and Tracking 4.3.2 IoT for Big Data 4.3.3 IoT Wearable Devices 4.3.4 Emergency Services 4.3.5 Smart Computing 4.3.6 Smart Nodes 4.4 Image Processing in Medical IoT 4.4.1 Remote Patient Monitoring 4.4.2 Preventive Care and Monitoring 4.4.3 Clinical Monitoring 4.4.4 Medical Service Organization 4.4.5 Different Applications Equipped with Image Processing 4.4.5.1 Proposed System 4.4.5.2 System Description 4.4.5.3 Communication System 4.4.5.4 Disease Recognition 4.4.5.5 Image Acquisition and Pre-Processing 4.4.5.6 Image Segmentation 4.4.5.7 Feature Extraction 4.4.5.8 Advantages of Proposed Application 4.4.5.9 Challenges of Application 4.5 Benefits and Limitations of IoT 4.6 Future Scope 4.7 Conclusion References Chapter 5 Theory, Practical Concepts, Strategies and Methods for Emotion Recognition 5.1 Introduction 5.1.1 Human Behavior and Emotions 5.2 Emotion Recognition and Its Types 5.2.1 Types of Emotion Recognition 5.2.2 Literature Review 5.3 Technologies Used In Emotion Recognition: 5.3.1 Image Processing 5.3.1.1 Benefits of Image Processing 5.3.2 OpenCV 5.3.3 Python 5.3.4 Deep Learning and Convolutional Neural Networks 5.4 Methodology 5.4.1 Hands on Approach of Emotion Recognition with CNN 5.4.1.1 Data Source 5.4.1.2 Preprocessing 5.4.1.3 Convolutional Neural Network (CNN) Setup 5.4.1.4 Model Training 5.4.2 Emotion Recognition Using DeepFace Framework 5.4.2.1 Hands on for Installation of DeepFace 5.4.2.2 Functions Used in DeepFace 4.4.2.3 Current Uses 5.5 Applications 5.5.1 Drawbacks 5.6 Test Results 5.6.1 Emotion Recognition Using DeepFace Result 5.6.2 Emotion Recognition Using Convolutional Neural Network Bibliography Chapter 6 A Comparative Study of Convolutional Neural Networks for Plant Phenology Recognition 6.1 Introduction 6.2 Related Works 6.3 Background 6.3.1 Deep Learning 6.3.1.1 Deep Learning Usage in Crop Production 6.3.1.2 Various Methods in Plant Subject Area 6.3.2 Convolutional Neural Networks 6.3.2.1 2-D CNNs 6.3.2.2 3-DCNNs 6.3.2.3 Methods of Regularization 6.4 CNN Performance 6.4.1 Comparing CNN with Other Methods 6.4.2 Generalized Productivity 6.5 Materials and Methods 6.5.1 Convolutional Neural Network Models 6.5.2 Datasets of Training and Testing 6.6 Results and Discussion 6.7 Conclusion References Chapter 7 IoT and Wearable Sensors for Health Monitoring 7.1 Introduction 7.2 Covid-19: Importance of Wearable Sensing Technology 7.3 Sensors and Types of Sensors 7.3.1 Types of Sensors Used in Wearable Technology 7.3.1.1 Accelerometer 7.3.1.2 Gyroscopes 7.3.1.3 Magnetometers 7.3.1.4 Global Positioning System (GPS) 7.3.1.5 Heart Rate Sensors 7.3.1.6 Pedometers 7.3.1.7 Pressure Sensors 7.3.1.8 Integration of Sensors into Wearables (Microcontroller) 7.4 Internet of Things 7.4.1 Network of the IoT 7.4.2 IoT-Based Wearable Healthcare System 7.5 Future Perspective 7.6 Conclusion References Chapter 8 Analysis of Interpolation-Based Image In-Painting Approaches 8.1 Introduction 8.2 Literature Review and Background 8.2.1 Cubic Interpolation 8.2.2 Kriging Interpolation 8.2.3 Radial Basis Functions 8.2.4 High-Dimensional Model Representation and Lagrange Interpolation 8.3 Materials and Methods 8.3.1 Materials 8.3.2 Method 8.3.2.1 Two-Dimensional Cubic Interpolation 8.3.2.2 Kriging Interpolation 8.3.2.3 Interpolation with Radial-Based Functions 8.3.2.4 Interpolation Using High-Dimensional Model Representation 8.4 Results 8.5 Conclusion References Chapter 9 Real Time Density–Based Traffic Congestion Detection System Using Image Processing and Fuzzy Logic Controller 9.1 Introduction 9.2 Related Work 9.3 Proposed System Model 9.3.1 Moving Vehicle Detection and Counting System 9.3.2 Parameter Extraction Using SUMO Simulator 9.3.3 Key Features Extraction using Fuzzy C-Means Clustering 9.3.4 Traffic Congestion Level Estimation Using Fuzzy Logic Controller 9.4 Experimental Analysis and Results 9.5 Conclusion References Annexure 9.1 Annexure 9.2 Annexure 9.3 Algorithm: Fuzzy C-means clustering [28,29] Chapter 10 Fundamentals of Face Recognition with IoT 10.1 Introduction 10.2 Process of Face Recognition 10.2.1 Fundamentals of Face Recognition Steps 10.2.1.1 Face Detection 10.2.1.2 Pre-Processing Image 10.2.1.3 Feature Extraction 10.2.1.4 Optimal Feature Selection and Reduction 10.2.1.5 Classification 10.3 System Architecture of IoT and Face Application 10.4 Table of Comparison 10.5 Challenges and Limitations 10.6 Conclusions References Chapter 11 IoT for Health Monitoring 11.1 Introduction 11.2 Literature Review 11.3 Proposed Methodology 11.4 Hardware and Software Specification 11.4.1 Arduino Uno 11.4.2 Temperature Sensor 11.4.3 LCD 11.4.4 ESP8266 11.4.5 Power Supply 11.4.6 Pulse Sensors 11.5 Software Specification 11.5.1 Arduino IDE 11.5.2 ThingSpeak (API) 11.6 Results and Discussion 11.6.1 Phases 1 and 2: Patient’sVitals Are CollectedandPushed to the Cloud, Where They Are Graphically Analysed 11.6.2 MATLAB Analysis of 3-Day Body Temperature of Patients 11.6.3 ThingSpeak Dashboard with All the Vital Parameters and Their Graphical Representation 11.6.4 Phase 3: IFTTIntegration of Data from ThingSpeak to Generate Triggers at Particular Threshold Value 11.7 Conclusion and Future Work References Chapter 12 Human Behavior Detection using Image Processing and IoT 12.1 Introduction 12.1.1 What Is Computer Vision? 12.1.2 Background of the Research 12.1.3 Objective of the Project 12.1.4 Scope of the Project 12.1.5 Overview of Proposed System 12.1.6 Project Organization 12.2 Literature Review 12.2.1 Local Shape-Based Human Detection 12.2.2 Global Approach 12.2.3 Local Approach: Implicit Shape Model 12.2.4 Dense Descriptors of Image Regions 12.2.5 Work in Human Detection 12.2.6 Different Types of Edge Detector 12.2.6.1 Sobel Operator 12.2.6.2 Roberts Cross Operator 12.2.6.3 Prewitt’s Operator 12.2.6.4 Laplacian of Gaussian 12.2.7 Canny Edge Detection Algorithm 12.2.8 Detection and Tracking Using Combination of Thermal and Visible Imaging 12.2.8.1 Segmentation 12.2.8.2 Classification 12.2.8.3 Summary 12.3 Proposed Human Detection Methodology 12.3.1 Introduction 12.3.2 Proposed System Architecture 12.3.3 Details of Human Detection 12.3.3.1 Human Detection 12.3.3.2 Image Acquisition 12.3.3.3 Gray Scale Conversion 12.3.3.4 Edge Detection 12.3.3.5 Summary 12.4 Experiments, Results, and Discussion 12.4.1 Introduction 12.4.2 Experiment Setup 12.4.3 Experimental Results of Proposed System 12.5 Conclusion and Future Work 12.5.1 Contribution 12.5.2 Limitations and Future Work 12.5.3 Concluding Remarks References Chapter 13 A Novel Cross-Slotted Dual-Band Fractal Microstrip Antenna Design for Internet of Things (IoT) Applications 13.1 Introduction 13.2 Related Work 13.3 Fractal Antenna Design and Measurements 13.3.1 Different Stages of Antenna Creation 13.3.2 Parameters for Antenna Characterization 13.4 Simulation Results of Cross-slotted Antenna 13.5 Measurements of Fabricated Cross-Slotted Fractal Antenna 13.5.1 Return Loss and Voltage Standing Wave Ratio 13.6 Conclusion References Chapter 14 Examination of Vegetation Health and Its Relation with Normalized Difference Built-Up Index: A Study on Rajarhat Block of North 24 Parganas District of West Bengal, India 14.1 Introduction 14.2 Materials and Methods 14.2.1 Normalised Difference Vegetation Index (NDVI) 14.2.2 Normalized Difference Built-Up Index (NDBI) 14.3 Results and Discussion 14.3.1 NDVI and NDBI Scenario of 1999 14.3.2 NDVI and NDBI Scenario of 2009 14.3.3 NDVI and NDBI Scenario of 2019 14.3.4 Temporal Change of Land Use Classified on the Basis of NDVI Values 14.3.5 Temporal Analysis of NDVI and NDBI 14.3.6 Analysing the Relationship between the NDVI and NDBI of the Study Area 14.4 Conclusion Acknowledgement References Chapter 15 Image Processing Implementation for Medical Images to Detect and Classify Various Diseases on the Basis of MRI and Ultrasound Images 15.1 Introduction to Medical Images 15.1.1 Computed Tomography (CT) 15.1.2 Ultrasound 15.1.3 Magnetic Resonance Imaging (MRI) 15.1.4 Fluoroscopy 15.1.5 Ophthalmic Imaging 15.2 Human Body Diseases Detected by Image Processing Techniques 15.2.1 Kidney Stone 15.2.2 Breast Cancer 15.2.3 Brain Tumor 15.3 Image Processing Techniques to Detect Abnormalities 15.3.1 Image Acquisition 15.3.2 Image Preprocessing (Conversion RGB to Gray) 15.3.3 Image Contrast Enhancement by Intensity Adjustment 15.3.4 Median Filter 15.3.5 Segmentation 15.3.5.1 Clustering Segmentation 15.3.5.2 Threshold Segmentation 15.3.5.3 Morphological Operation for Area Localization 15.4 Classification by Convolution Neural Networks 15.5 Result Analysis 15.6 Conclusion References Chapter 16 Benchmarking of Medical Imaging Technologies 16.1 Introduction 16.2 Imaging Techniques 16.2.1 Traditional Film Radiography 16.2.2 Imaging Radiography 16.2.3 Computed Tomography 16.2.4 Magnetic Resonance Imaging (MRI) 16.2.5 Ultrasonography 16.2.6 Atomic Medicine 16.2.7 Scintigraphy 16.2.8 Positron Emission Tomography (PET) 16.3 Other Imaging Techniques 16.3.1 Electrical Impedance Tomography (EIT) 16.3.2 Optical Coherence Tomography (OCT) 16.3.3 Photoacoustic/Thermoacoustic Imaging 16.3.4 Microwave Imaging 16.3.5 Magnetic Resonance Elastography (MRE) 16.4 Requirement for Several Imaging Modalities 16.5 Picture Quality, Image Processing, and Visualization of Images 16.6 Parts of Image Processing System 16.6.1 Picture Processing 16.6.2 Picture Improvement 16.6.3 Shading Handling 16.6.4 Wavelets 16.6.5 Division 16.6.6 Portrayal 16.6.7 Description 16.6.8 Acknowledge 16.7 Radiation Exposure and Radiation Protection in Medical Imaging 16.8 General Applications of Medical Imaging: Imaging towards Diseases 16.8.1 Alzheimer’s Disease (AD) 16.8.2 Malignant Growth 16.8.3 Cardiovascular Diseases 16.8.4 Neonatal Abstinence Disorder (NAD) 16.8.5 Imaging in Drug Development 16.8.6 Imaging in Medical Device Manufacturing 16.9 Conclusion 16.9.1 Future Aspects of Medical Imaging References Chapter 17 Application of Image Processing in Plant Leaf Disease Detection 17.1 Introduction 17.2 Contributions in the Field of Leaf Disease Detection 17.3 Leaf Disease Detection Using Convolutional Neural Networks 17.4 Results and Observations 17.5 Conclusion References Chapter 18 Monitoring Air Pollution with the Help of Tree Bark and Advanced Technology IoT and AI Techniques at Indore City 18.1 Introduction 18.2 Literature Survey 18.3 Aim and Objective 18.4 Study Area 18.5 Pollution Areas 18.6 Experimental Trees 18.7 Material 18.8 Methods 18.9 Observation 18.10 Results and Discussion 18.11 Challenges and Possibilities 18.12 Conclusion Acknowledgments References Chapter 19 IoT-Based Smart Stick for the Blind: A Review 19.1 Introduction 19.2 System Model 19.2.1 Environment Sensing and Obstacle Detection 19.2.1.1 Some Commonly Used Sensors 19.2.1.2 Some of the Most Commonly Used Microcontroller Boards 19.2.2 Communication Messages and Alerts 19.2.3 Tracking 19.2.4 Other Enhanced Features 19.3 Issues and Challenges 19.4 Conclusion and Future Work References Index