دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Victor Nian (editor)
سری:
ISBN (شابک) : 0128182563, 9780128182567
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 253
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Advanced Security and Safeguarding in the Nuclear Power Industry: State of the art and future challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امنیت و حفاظت پیشرفته در صنعت برق هسته ای: وضعیت هنر و چالش های آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ایمنی و حفاظت پیشرفته در صنعت انرژی هستهای: وضعیت هنر و چالشهای آینده نمایشی کلی از طیف گستردهای از مسائل علمی، مهندسی، سیاستگذاری، مقرراتی و قانونی پیش روی صنعت انرژی هستهای را ارائه میکند. . ویراستار ویکتور نیان و تیم همکارانش مروری بسیار مورد نیاز درباره آخرین پیشرفتها در ایمنی، امنیت و پادمانها («Three Ss) و همچنین سایر موضوعات مرتبط و مهم در داخل و خارج از صنعت انرژی هستهای ارائه میکنند. این کتاب به ویژه برای کشورهایی که علاقه مند به توسعه صنعت انرژی هسته ای هستند و همچنین کشورهایی که آموزش برای بهبود دیدگاه جامعه در مورد انرژی هسته ای برای موفقیت آینده آن بسیار مهم است، مفید است.
ایمنی و حفاظت پیشرفته در صنعت برق هستهای مبانی تولید انرژی هستهای و همچنین مزایا و اثرات تشعشعات بر جامعه انسانی، کنوانسیونها، معاهدات و استانداردهای بینالمللی را پوشش میدهد. در مورد "سه S، آمادگی و واکنش اضطراری، و مسئولیت مدنی در صورت وقوع یک حادثه هسته ای.
Advanced Security and Safeguarding in the Nuclear Power Industry: State of the art and future challenges presents an overview of a wide ranging scientific, engineering, policy, regulatory, and legal issues facing the nuclear power industry. Editor Victor Nian and his team of contributors deliver a much needed review of the latest developments in safety, security and safeguards (“Three S’s) as well as other related and important subject matters within and beyond the nuclear power industry. This book is particularly insightful to countries with an interest in developing a nuclear power industry as well as countries where education to improve society’s opinion on nuclear energy is crucial to its future success.
Advanced Security and Safeguarding in the Nuclear Power Industry covers the foundations of nuclear power production as well as the benefits and impacts of radiation to human society, international conventions, treaties, and standards on the “Three S’s, emergency preparedness and response, and civil liability in the event of a nuclear accident.
Cover Front-Matter_2020_Advanced-Security-and-Safeguarding-in-the-Nuclear-Power-In Advanced Security and Safeguarding in the Nuclear Power Industry: State of the art and future challenges Copyright_2020_Advanced-Security-and-Safeguarding-in-the-Nuclear-Power-Indus Copyright Contributors_2020_Advanced-Security-and-Safeguarding-in-the-Nuclear-Power-In Contributors About-the-Edit_2020_Advanced-Security-and-Safeguarding-in-the-Nuclear-Power- About the Editor Victor Nian Preface_2020_Advanced-Security-and-Safeguarding-in-the-Nuclear-Power-Industr Preface Acknowledgmen_2020_Advanced-Security-and-Safeguarding-in-the-Nuclear-Power-I Acknowledgment 1 1. Recent advances in nuclear power technologies 1. Introduction 2. Methods for converting the energy of division to useful work 2.1 Efficiency 2.2 Heat transformation in electricity through mechanical work 2.3 Direct conversion of heat into electricity 2.3.1 Thermal electric generators. 2.3.2 Thermoelectric generator accepted quality measure Q factor 2.3.3 Thermal electron energy converter 2.3.4 Where is the required voltage? 2.4 Other methods for converting fission energy into useful work 2.4.1 Magneto-hydrodynamic method 2.4.2 Nuclear rocket engine 3. Materials for nuclear reactors: classification of nuclear reactors 3.1 Types of fuel element structures 3.1.1 Types of fuel rods 3.2 Fuel 3.2.1 Pure uranium metal 3.2.2 Alloyed uranium metal 3.2.3 Plutonium metal 3.2.4 Uranium oxides and plutonium 3.2.5 Carbide uranium and plutonium 3.2.6 Dispersion fuel 3.3 Construction materials 3.3.1 Aluminum and its alloys 3.3.2 Magnesium and its alloys 3.3.3 Zirconium and its alloys 3.3.4 Stainless steel 3.3.5 Graphite 3.4 Coolant 3.4.1 Water 3.4.2 Gases 3.4.3 Liquid metal 3.4.4 Disadvantages 3.5 Moderator 3.6 Absorber 3.6.1 Boron 3.6.2 Cadmium 3.6.3 Europium 3.6.4 Reaction 3.7 Classification of nuclear reactors 4. Conclusion Suggested reading 2 2. Non-power applications—new missions for nuclear energy to be delivered safely and securely 1. Introduction 2. New opportunities for civil nuclear energy 2.1 Historical background 2.2 Looking ahead 3. Security and safeguards and safety—the three S's 3.1 Security 3.2 Safeguards—nuclear nonproliferation risks 3.3 Safety—severe nuclear accidents 4. Summary remarks References 3 3. Radiation hazards from the nuclear fuel cycle 1. Basic concepts of radiation hazards 2. Overview of the nuclear fuel cycle 2.1 Mining 2.2 Milling 2.3 Conversion 2.4 Enrichment 2.5 Fuel fabrication 2.6 Reactor operation 2.7 Storage of spent fuel 2.8 Transportation of spent fuel 2.9 Reprocessing of spent fuel 2.10 Permanent disposal of spent fuel 2.11 Decommissioning of nuclear fuel cycle facilities 3. Presence or release of radioactive materials in the nuclear fuel cycle 3.1 Mining 3.2 Milling 3.3 Conversion, enrichment, and fuel fabrication 3.4 Nuclear reactor operation 3.5 Reprocessing 4. Concern with spent nuclear fuel 5. Radiation concern in nuclear power plant decommissioning 6. Conclusions References 4 4. Health effects of exposure to ionizing radiation 1. Introduction 2. Basic concepts of ionizing radiation 3. Biological effects of ionizing radiation 4. Acute effects of ionizing radiation 4.1 Main overexposed cases to ionizing radiation 4.1.1 Atomic bombs at Hiroshima and Nagasaki 4.1.2 Chernobyl accident 5. Effects of low doses of ionizing radiation 5.1 Radiation workers and patients exposed to ionizing radiation 5.2 Environmental radiation exposures 6. Radiation-induced chromosome alterations 7. Transgenerational effects of radiation 8. Epigenetics changes induced by ionizing radiations 9. Radiation protection 10. Final remarks References 5 5. Nuclear plant severe accidents: challenges and prevention 1. Introduction 2. Fukushima Daiichi accidents and insights from the accident analyses 2.1 Event progression at unit 1 2.2 Event progression at unit 3 2.3 Event progression at unit 2 2.4 Explosions 2.5 Unit 1 explosion and spent fuel pool conditions 2.6 Unit 3 explosion and spent fuel pool conditions 2.7 Unit 4 explosion and spent fuel pool conditions 2.8 Remarks on the accident causes 3. Investigative studies of lessons learned 3.1 Causes of the fukushima accident as found by the US National Academy of Sciences study 3.2 Lessons learned from the National Academy of Sciences Study 3.2.1 Lessons learned on new information about hazards 3.2.2 Lessons learned on improvement of plant systems, resources, and training 3.2.2.1 Plant systems 3.2.2.1 Plant systems 3.2.2.2 Resources and training 3.2.2.2 Resources and training 3.2.3 Lessons learned on risk assessment of beyond-design-basis events 3.2.4 Lessons learned on risk concepts for nuclear safety regulations 3.2.5 Lessons learned on off-site emergency response 3.2.6 Lessons learned on nuclear safety culture 4. The new post-Fukushima regulatory body structure in Japan 4.1 Recommendations by the National Diet Independent Investigation Commission 4.2 Recommendations by the Government Investigation Committee 5. Post-Fukushima regulations and technology development 5.1 Japan's new regulatory regime 5.2 New regulatory requirements in Japan 5.2.1 Safety upgrade at Kashiwazaki-Kariwa site 5.2.1.1 Power supply 5.2.1.1 Power supply 5.2.1.2 Earthquake protection 5.2.1.2 Earthquake protection 5.2.1.3 Tsunami protection 5.2.1.3 Tsunami protection 5.2.1.4 Emergency preparedness 5.2.1.4 Emergency preparedness 5.3 Post-Fukushima regulatory requirements in the United States 5.3.1 Implementation on Gen-III+reactor 5.4 Development of Accident Tolerant Fuel Technology as Risk Mitigation 6. Concluding remarks References 6 6. Nuclear off-site emergency preparedness and response: key concepts and international normative principles∗∗This chapter is ... 1. Introduction 2. The international normative setting for emergency preparedness and response 2.1 The IAEA-centered regulatory framework 2.1.1 Relevant international treaty instruments 2.1.2 EPR-related IAEA safety standards, operational arrangements, and services 2.1.3 The “normative pull” of emergency preparedness and response–related safety standards 2.2 Other international, regional, and industry-inspired nuclear emergency preparedness and response efforts 3. Specific emergency preparedness and response policy challenges and international regulatory responses 3.1 Cross-border coordination of emergency preparedness and response: shared understandings and mutual trust 3.2 Emergency planning zones 3.3 Event reporting and information sharing 3.4 Validation of national emergency preparedness and response through international peer review and emergency exercises 4. Nuclear emergency assistance: global, regional, and bilateral arrangements 5. Conclusions References 7 7. International conventions and legal frameworks on nuclear safety, security, and safeguards 1. Part 1: what is meant by nuclear safety, security, and safeguards? 2. Part 2: what are the key international conventions on safety, security, and safeguards? 2.1 Introduction 2.2 Safety 2.2.1 Convention on nuclear safety 2.2.2 Joint convention on the safety of spent fuel management and on the safety of radioactive waste management 2.2.3 Convention on early notification of a nuclear accident 2.2.4 Convention on assistance in the case of a nuclear accident or radiological emergency 2.3 Security 2.3.1 Convention on the physical protection of nuclear material 2.3.2 Amendment to the convention on the physical protection of nuclear material 2.3.3 International convention for the suppression of acts of nuclear terrorism 2.4 Safeguards 2.4.1 The treaty on the non-proliferation of nuclear weapons 2.4.2 IAEA safeguards agreements 2.4.3 Model protocol additional to the agreements(s) between states(s) and the international atomic energy agency for the applica ... 2.4.4 Comprehensive nuclear test-ban treaty and protocol to the comprehensive nuclear test-ban treaty 3. Part 3: what are the additional conventions of relevance? 3.1 Convention of environmental impact assessment in a transboundary context (the “Espoo Convention”) 3.2 Convention on access to information, public participation in decision-making and access to justice in environmental matters ... 4. Part 4: what are the significance of these regimes? – reputational risk analysis 4.1 Reputational risk 4.1.1 International standards and practices 4.1.2 International agreements 4.1.3 Public acceptance and sustained government commitment 4.1.4 Host country nuclear regulatory authority 4.1.5 Sustainability 4.1.6 Nuclear liability and insurance 5. Part 5: concluding thoughts References 8 8. Civil liability in the event of a severe nuclear disaster 1. Introduction 1.1 Legal issues 2. Nuclear new build programs 2.1 Volume 2.2 Geographic distribution 2.3 New entrants 3. The international nuclear liability regimes 3.1 Origins 3.2 Regimes 3.3 Key legal principles 3.4 Convention on supplementary compensation for nuclear damage 3.5 Nonsovereign extralegal initiatives 3.6 The advantages of a harmonized international legal regime 4. Nuclear new build countries—national legal regimes 4.1 The United States 4.2 China 4.3 Russia 4.4 India 4.5 The United Kingdom 4.6 The United Arab Emirates 4.7 The advantages of international convergence 5. Conclusion References 9 9. Future challenges in safety, security, and safeguards 1. Introduction 2. Overview of global nuclear industry 3. Loss of public trust in nuclear safety 4. Challenges for nuclear security 5. Challenges for nuclear safeguards 6. “Safeguarding” public from nuclear risks 7. Conclusion References Index Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Back Cover