دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Shunlin Liang, Jindi Wang سری: ISBN (شابک) : 0128158263, 9780128158265 ناشر: Academic Press سال نشر: 2019 تعداد صفحات: 992 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 مگابایت
در صورت تبدیل فایل کتاب Advanced Remote Sensing: Terrestrial Information Extraction and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سنجش از دور پیشرفته: استخراج اطلاعات زمینی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Advanced Remote Sensing: Terrestrial Information Extraction
and Applications, Edition, یک مرجع کاملاً به روز شده مبتنی
بر برنامه است که یک منبع واحد در مورد مفاهیم ریاضی لازم برای
جمع آوری و یکسان سازی داده های سنجش از دور فراهم می کند. این
تکنیکهای پیشرفته را برای تخمین متغیرهای سطح زمین از انواع
دادهها از جمله حسگرهای نوری مانند رادار و لیدار ارائه میکند.
این کتاب به دانشمندان در زمینههای مختلف از جمله جغرافیا،
ژئوفیزیک، زمینشناسی، علوم جوی، علوم محیطی، علوم سیارهای و
بومشناسی دسترسی به تکنیکهای استخراج دادههای بسیار مهم و
کاربردهای تقریبا نامحدود آنها را میدهد.
در حالی که تکنیک های ارائه شده به اندازه کافی برای باتجربه ترین
دانشمندان دقیق است، به خوبی طراحی و یکپارچه شده اند و محتوای
کتاب را در اجرای آن بصری و کاربردی می کند.
Advanced Remote Sensing: Terrestrial Information Extraction
and Applications, Second Edition, is a thoroughly updated
application-based reference that provides a single source on
the mathematical concepts necessary for remote sensing data
gathering and assimilation. It presents state-of-the-art
techniques for estimating land surface variables from a variety
of data types, including optical sensors like RADAR and LIDAR.
The book provides scientists in a number of different fields,
including geography, geophysics, geology, atmospheric science,
environmental science, planetary science and ecology with
access to critically-important data extraction techniques and
their virtually unlimited applications.
While rigorous enough for the most experienced of scientists,
the techniques presented are well designed and integrated,
making the book's content intuitive and practical in its
implementation.
Cover Advanced Remote Sensing: Terrestrial Information Extraction and Applications Copyright Contributors of the second edition Foreword to the first edition Preface to the first edition Preface to the second edition 1 - A systematic view of remote sensing 1.1 Introduction 1.2 Platform and sensor systems 1.2.1 Geostationary satellites 1.2.2 Polar-orbiting satellites 1.2.3 Overview of major satellite missions and programs 1.2.3.1 USA 1.2.3.2 Europe 1.2.3.3 China 1.2.4 Small satellites and satellite constellations 1.2.5 Sensor types 1.2.6 Data characteristics 1.2.6.1 Spatial resolution 1.2.6.2 Spectral resolution 1.2.6.3 Temporal resolution 1.2.6.4 Radiometric resolution 1.3 Data transmission and ground receiving system 1.4 Data processing 1.4.1 Radiometric calibration 1.4.2 Geometric processing 1.4.3 Image quality enhancement 1.4.4 Atmospheric correction 1.4.5 Image fusion and product integration 1.5 Mapping category variables 1.6 Estimating quantitative variables 1.6.1 Forward radiation modeling 1.6.1.1 Scene generation 1.6.1.2 Surface radiation modeling 1.6.1.3 Atmospheric radiative transfer 1.6.1.4 Sensor modeling 1.6.2 Inversion methods 1.6.2.1 Statistical analysis and machine learning techniques 1.6.2.1.1 Artificial neural network 1.6.2.1.2 Support vector machine 1.6.2.1.3 Regression tree 1.6.2.1.4 Random forest 1.6.2.1.5 Multiple adaptive regression spline function 1.6.2.2 Optimization algorithms 1.6.2.3 Look-up table algorithms 1.6.2.4 Direct estimation methods 1.6.2.5 Data assimilation methods 1.6.2.6 Spatial and temporal scaling 1.6.2.7 Regularization method 1.6.3 Use of multisource data 1.6.4 Use of a prior knowledge 1.6.5 Space–time constraints 1.6.6 Algorithm ensemble 1.7 Production, archiving, and distribution of high-level products 1.8 Product validation 1.9 Remote sensing applications 1.10 Conclusion References 2 - Geometric processing and positioning techniques 2.1 Overview 2.2 In-orbit geometric calibration of satellite remote sensing imagery 2.2.1 Systematic error sources of satellite remote sensing imagery 2.2.1.1 The Earth curvature correction 2.2.1.2 Atmospheric refraction correction 2.2.1.3 The Earth rotation correction 2.2.1.4 The CCD manufacture error correction 2.2.2 In-orbit geometric calibration model 2.2.3 In-orbit geometric calibration of the ZiYuan-3 satellite 2.2.3.1 Calibration accuracy analysis of the CCD-detector look angles 2.2.3.2 Direct georeferencing accuracy analysis 2.2.3.3 Extrapolated georeferencing accuracy analysis 2.3 Geometric rectification of a single remote sensing image 2.3.1 Image geometric rectification models 2.3.1.1 Rigorous geometric processing models 2.3.1.2 Empirical geometric processing models 2.3.1.2.1 The general polynomial model 2.3.1.2.2 The direct linear transformation model 2.3.1.2.3 The affine transformation model 2.3.1.2.4 The rational function model 2.3.2 Layout of ground control points 2.3.2.1 Principles of selecting ground control points 2.3.2.2 Distribution requirements of ground control points 2.3.3 Image resampling 2.3.3.1 Nearest-neighbor interpolation 2.3.3.2 Bilinear interpolation 2.3.3.3 Bicubic convolution 2.3.4 Accuracy evaluation 2.4 Geometric registration of satellite remote sensing imagery 2.4.1 Automatic extraction of image registration points 2.4.1.1 Image matching based on image gray 2.4.1.1.1 Correlation coefficient matching 2.4.1.1.2 Least squares matching 2.4.1.2 Image matching based on features 2.4.1.2.1 Detecting the extreme values of the scale space 2.4.1.2.2 Direction distribution of key points 2.4.1.2.3 The description of feature points 2.4.1.2.4 Feature matching 2.4.1.2.5 The elimination of mismatched conjugate points 2.4.2 Mathematical models of image registration 2.4.2.1 Linear transformation models 2.4.2.2 Nonlinear transformation models 2.5 Construction of a digital terrain model 2.5.1 The concept of the DEM and structure of the model 2.5.1.1 The regular grid DEM 2.5.1.2 The triangulated irregular network 2.5.2 Preprocessing of DEM data 2.5.2.1 DEM data collection 2.5.2.2 Blunder detection of original data 2.5.2.2.1 The stereoscopic manual visual inspection method 2.5.2.2.2 Gross error detection based on the fitting curved surface 2.5.2.3 Filtering the source data 2.5.3 Interpolating of DEM data 2.6 Orthoimage production 2.6.1 Digital differential rectification of frame perspective imagery 2.6.1.1 Principles of digital differential rectification 2.6.1.2 Digital differential rectification based on the inverse method 2.6.1.3 Digital differential rectification based on the forward method 2.6.2 Digital differential rectification of linear array remote sensing imagery 2.6.2.1 Digital differential rectification based on the rigorous geometric processing model 2.6.2.2 Digital differential rectification based on the RFM 2.6.3 The orthoimage mosaic 2.6.3.1 Image dodging and tone balance 2.6.3.1.1 Image dodging in a single remote sensing image 2.6.3.1.2 Tone balance among different images 2.6.3.2 Image mosaic 2.6.3.2.1 Mosaic line searching 2.6.3.2.2 Image filling 2.7 Summary 2.8 Questions References Further reading 3 - Compositing, smoothing, and gap-filling techniques 3.1 Multitemporal compositing techniques 3.1.1 Maximum vegetation index composite 3.1.2 Minimum band reflectance composite 3.1.3 Maximum surface temperature composite 3.1.4 Mixing criteria compositing 3.1.5 MODIS vegetation index compositing technique 3.2 Time series data smoothing and gap filling 3.2.1 Curve fitting method 3.2.1.1 Adaptive SG filtering 3.2.1.2 Asymmetric Gaussian function and double logistic function fitting 3.2.2 Ecosystem-dependent temporal interpolation technique 3.2.3 Temporal spatial filter algorithm 3.2.4 Smoothing and gap-filling algorithm based on the wavelet transform 3.2.5 Time series surface reflectance reconstruction 3.2.5.1 Surface reflectance screening 3.2.5.2 Surface reflectance composition 3.2.5.3 NDVI reconstruction 3.2.5.4 Cloud detection of surface reflectance 3.2.5.5 Surface reflectance reconstruction 3.3 Summary References 4 - Atmospheric correction of optical imagery 4.1 Atmospheric effects 4.1.1 Atmospheric characterization in a quantitative remote sensing model 4.1.2 Atmospheric composition 4.1.3 Interaction between electromagnetic waves and the atmosphere 4.1.4 Major aspects of atmospheric correction 4.1.4.1 Internal sensor error 4.1.4.2 External errors caused by environmental factors 4.2 Correcting the aerosol impact 4.2.1 Spectral information–based correction method 4.2.1.1 Midinfrared dark target method 4.2.1.1.1 Selection of dark pixels 4.2.1.1.2 Determining the surface reflectance of dark pixels 4.2.1.1.3 Determination of the aerosol model 4.2.1.1.4 Calculating aerosol optical thickness over dark targets 4.2.1.2 Near-infrared dark target method 4.2.1.3 Deep blue method 4.2.1.3.1 Pixel selection 4.2.1.3.2 Determination of surface reflectance 4.2.1.3.3 Determining aerosol models 4.2.1.3.4 Obtaining aerosol optical thickness 4.2.2 Temporal information–based correction method 4.2.2.1 Linear regression method 4.2.2.2 Improved multitemporal imaging method 4.2.3 Angular information–based correction method 4.2.4 Polarization information–based correction method 4.2.5 Multisensor cooperative inversion algorithm 4.2.6 Joint inversion of atmospheric surface parameters 4.3 Correcting the impact of water vapor 4.4 Correcting the impacts of other constituents 4.5 Commonly used models and software 4.5.1 MODTRAN model 4.5.2 6S Model 4.5.3 FLAASH 4.5.4 ACTOR 4.5.5 ACORN 4.6 Application of GF-1 WFV atmospheric correction 4.6.1 Radiation calibration 4.6.2 Geometric correction and angle-assisted data calculation 4.6.3 Atmospheric parameter acquisition 4.6.4 Atmospheric correction 4.7 Conclusions References 5 - Solar radiation 5.1 Basic concepts 5.1.1 Solar radiation spectrum 5.1.2 Solar constant 5.1.3 Shortwave radiation and photosynthetically active radiation 5.1.4 Attenuation of solar radiation 5.1.5 Earth radiation budget 5.2 Observation network of land surface radiation 5.3 Surface radiation estimation based on satellite remote sensing and GCM 5.3.1 Empirical model 5.3.1.1 Simple empirical model 5.3.1.1.1 Lacis and Hansen model 5.3.1.1.2 Gueymard model 5.3.1.2 Relative sunshine duration model 5.3.2 Parameterization method 5.3.2.1 Inputs for parameterization models 5.3.2.2 Clear-sky model 5.3.2.2.1 Broadband model 5.3.2.2.1.1 Modified Bird model 5.3.2.2.2 Spectral model 5.3.2.2.2.1 Iqbal spectral model 5.3.2.3 Cloudy-sky model 5.3.2.3.1 Broadband model 5.3.2.3.2 Dual-band model 5.3.3 Lookup table method 5.3.4 Machine learning methods 5.4 Current existing products and long-term variations 5.4.1 Existing products and evaluation 5.4.2 Temporal and spatial patterns of solar radiation 5.5 Summary Nomenclature Acknowledgements References 6 - Broadband albedo 6.1 Land surface bidirectional reflectance modeling 6.1.1 Definition of land surface bidirectional reflectances and broadband albedo 6.1.1.1 Bidirectional reflectance distribution function 6.1.1.2 The definition of BRDF, reflectance, reflectance factor, and albedo 6.1.1.3 Definitions of relative physical quantities 6.1.1.3.1 Bidirectional reflectance factor 6.1.1.3.2 Diffuse hemispherical–directional reflectance factor 6.1.1.3.3 Hemispherical–directional reflectance factor 6.1.1.3.4 Directional–hemispherical reflectance 6.1.1.3.5 Diffuse hemispherical–hemispherical reflectance 6.1.1.3.6 Hemispherical–hemispherical reflectance 6.1.1.3.7 Broadband albedo 6.1.2 Observations data of surface bidirectional reflection 6.1.2.1 Laboratory and field observations 6.1.2.1.1 Bidirectional reflective characteristics of vegetation canopy 6.1.2.1.2 Bidirectional reflective characteristics of bare soil 6.1.2.1.3 Bidirectional reflective characteristics of ice/snow 6.1.2.2 Remote sensing observation data 6.1.3 Surface bidirectional reflectance model 6.1.3.1 Physical model 6.1.3.1.1 Radiative transfer models 6.1.3.1.2 Geometric optical models 6.1.3.1.3 Geometric–radiative transfer mixed model 6.1.3.1.4 Real scene computer simulation model 6.1.3.2 Empirical model 6.1.3.2.1 Minnaert model 6.1.3.2.2 Shibayama model 6.1.3.2.3 Walthall model and modified Walthall model 6.1.3.3 Semiempirical models 6.1.3.3.1 Kernel-driven model 6.1.3.3.1.1 RossThick kernel 6.1.3.3.1.2 RossThin kernel 6.1.3.3.1.3 RossHotspot kernel (modified RossThick kernel) 6.1.3.3.1.4 LiSparse and LiSparseR kernels 6.1.3.3.1.5 LiDense kernel 6.1.3.3.1.6 LiTransit kernel 6.1.3.3.1.7 Roujean geometric kernel 6.1.3.3.2 RPV model 6.2 The albedo-estimation method based on bidirectional reflectance model inversion 6.2.1 Inversion of the bidirectional reflectance model and derivation of narrowband albedo 6.2.1.1 Bidirectional reflectance model and data fitting 6.2.1.2 Albedo from integration of bidirectional reflectance 6.2.2 Narrowband-to-broadband albedo conversion 6.2.2.1 Vegetation and soil 6.2.2.2 Snow cover 6.3 The direct estimation of surface albedo 6.3.1 Overview of the direct-estimation method 6.3.2 Albedo-estimation method based on surface bidirectional reflectance data 6.3.2.1 General concept 6.3.2.2 Building the training dataset 6.3.2.2.1 The fitting and interpolation method of the POLDER-BRDF database 6.3.2.2.2 Land cover classification 6.3.2.2.3 Band conversions from POLDER to MODIS 6.3.2.3 Regression method 6.3.2.4 The results of the AB1 algorithm 6.3.3 The TOA reflectance–based method 6.3.3.1 Atmospheric radiative transfer simulation 6.3.3.2 The result of the AB2 algorithm 6.4 Global land surface albedo products and validation 6.4.1 Global surface albedo products from satellites 6.4.1.1 MODIS albedo 6.4.1.2 POLDER albedo 6.4.1.3 VIIRS albedo 6.4.1.4 Meteosat albedo 6.4.1.5 CLARA-SAL 6.4.1.6 CERES albedo 6.4.1.7 GLOBALBEDO 6.4.1.8 GLASS albedo 6.4.1.9 MuSyQ albedo 6.4.2 Issues in validating the remote sensing albedo products 6.4.2.1 The scale matching method in the validation of land surface albedo products 6.4.2.2 Uncertainties in the validation and their assessment 6.4.2.3 The issue of albedo scaling in the mountainous areas 6.5 Temporal and spatial analysis of the global land surface albedo 6.5.1 The method to calculate regional average and monthly average albedo 6.5.2 Temporal variation of global albedo 6.5.3 The surface albedo of different latitudinal zones 6.5.4 The comparison of different albedo products 6.5.5 Surface albedo of different land types 6.5.6 Change trend of annual average albedo 6.6 Problems and prospects in the study of broadband albedo References 7 - Land surface temperature and thermal infrared emissivity 7.1 The definitions of land surface temperature and land surface emissivity 7.1.1 The definition of land surface temperature 7.1.1.1 Thermodynamic or kinetic temperature (Norman and Becker, 1995) 7.1.1.2 Brightness temperature 7.1.1.3 Radiometric temperature (Becker and Li, 1995) 7.1.1.4 Equivalent or average temperature 7.1.2 Definition of land surface temperature 7.1.2.1 Spectral emissivity 7.1.2.2 e-Emissivity (Norman and Becker, 1995) 7.1.2.3 r-Emissivity (Norman and Becker, 1995) 7.1.2.4 Equivalent emissivity for a nonisothermal surface (Li et al., 1999) 7.1.2.5 Component effective emissivity 7.2 The estimation of average land surface temperature 7.2.1 Single-channel algorithms 7.2.1.1 The radiative transfer equation method 7.2.1.2 The single-channel algorithm 7.2.1.3 Generalized single-window algorithms 7.2.2 Split-window algorithms for thermal infrared sensors 7.2.3 Multichannel algorithms 7.2.3.1 The temperature-independent spectral index method 7.2.3.2 The MODIS day/night algorithm 7.2.3.3 The integrated retrieval algorithm 7.2.3.4 Algorithms for hyperspectral data from meteorological satellites 7.2.4 Microwave methods 7.3 LSE estimation methods 7.3.1 Emissivity measurement methods 7.3.2 Classification-based methods 7.3.3 NDVI-based methods 7.3.4 Multichannel methods 7.3.4.1 The normalized emissivity method 7.3.4.2 The α residual method 7.3.4.3 The MMD method 7.3.4.4 The TES algorithm for ASTER 7.3.4.5 Optimization methods 7.3.5 Retrieval algorithms for hyperspectral data 7.3.5.1 The iterative spectrally smooth temperature and emissivity separation algorithm 7.3.5.2 Correlation-based algorithms 7.3.5.3 Downward radiance residue index algorithms 7.3.5.4 Multiscale wavelet–based temperature and emissivity separation algorithm 7.3.6 The calculation of the surface longwave broadband emissivity 7.3.7 The retrieval of the surface longwave broadband emissivity 7.4 LSE and LST products 7.5 Fusion of land surface temperature products 7.6 Summary Acronyms References Further reading 8 - Surface longwave radiation budget 8.1 Surface downward longwave radiation 8.1.1 Background 8.1.2 Profile-based methods 8.1.3 Hybrid methods 8.1.3.1 The general framework of the hybrid methods 8.1.3.2 Clear-sky surface downward longwave radiation model for MODIS 8.1.3.2.1 Surface downward longwave radiation model in North America 8.1.3.2.2 Surface downward longwave radiation model in globe 8.1.3.3 Clear-sky surface downward longwave radiation models for GOES Sounders and GOES-R ABI 8.1.3.4 Surface downward longwave radiation hybrid models for CERES 8.1.4 Meteorological parameter–based methods 8.1.4.1 Bayesian model averaging 8.1.4.2 Clear-sky parameterizations 8.1.4.3 All-sky parameterizations 8.1.4.4 Verification based on ground measurement data 8.1.4.4.1 Verification in clear skies 8.1.4.4.2 Verification in cloudy skies 8.2 Surface upwelling longwave radiation 8.2.1 Temperature-emissivity method 8.2.2 Hybrid methods 8.2.2.1 MODIS linear surface upwelling longwave radiation model 8.2.2.2 Dynamic learning neural network model 8.2.2.3 Surface upwelling longwave radiation models for VIIRS 8.2.2.4 Surface upwelling longwave radiation models for GOES Sounders and GOES-R ABI 8.3 Surface net longwave radiation 8.3.1 Estimation of surface net longwave radiation in clear sky 8.3.2 Estimation of surface net longwave radiation in cloudy sky 8.3.2.1 Methods 8.3.2.1.1 Linear model 8.3.2.1.2 MARS model 8.3.2.2 Results 8.3.2.2.1 Validation of the linear model 8.3.2.2.2 Validation of MARS model 8.3.3 Global surface net longwave radiation product generation 8.4 Ground validation networks and existing satellite-derived surface longwave radiation budget products 8.4.1 Existing surface longwave radiation budget products 8.4.2 Spatiotemporal variation analysis of surface downward longwave radiation 8.5 Summary Acknowledgments References Further reading 9 - Canopy biochemical characteristics 9.1 Overview of principles and methods 9.1.1 Remote sensing of plant biochemical parameters 9.1.1.1 Leaf structure and its biological, physical, and chemical properties 9.1.1.2 Spectral characteristics of biochemicals 9.1.2 Introduction to theories and methods 9.1.2.1 Empirical and semiempirical methods 9.1.2.2 Radiative transfer models 9.1.2.2.1 N-stream models 9.1.2.2.2 Random model 9.1.2.2.3 Ray tracing model 9.1.2.2.4 Plate model 9.1.2.2.5 Conifer leaf model LIBERTY 9.2 Empirical and semiempirical methods 9.2.1 Extraction of biochemical concentration on the leaf scale 9.2.1.1 Cellulose concentration 9.2.1.2 Lignin concentration 9.2.1.3 Carbon concentration 9.2.1.4 Nitrogen concentration 9.2.2 Extraction of chlorophyll concentration 9.2.2.1 Spectral index 9.2.2.2 Chlorophyll concentration on the leaf scale 9.2.2.3 Chlorophyll concentration of crops on the canopy scale 9.3 Extraction using physical models 9.3.1 Overview of the retrieval methods 9.3.1.1 The cost function in retrieval 9.3.1.2 Retrieval algorithm 9.3.1.3 Retrieval strategy 9.3.2 Leaf-scale biochemical parameter retrieval 9.3.2.1 Unbiased data retrieval 9.3.2.1.1 PROSPECT model retrieval 9.3.2.1.2 LIBERTY model retrieval 9.3.2.2 Extraction from noisy data 9.3.2.3 Extraction from observed data 9.3.3 Canopy-scale biochemical parameter retrieval 9.3.3.1 Retrieval from simulated data: multiple-phase retrieval of biochemical parameters at the canopy scale 9.3.3.2 Retrieval of biochemical parameters from real-observed data 9.3.4 The influence of spectral resolution and band selection 9.3.4.1 The influence of spectral resolution on the retrieval of biochemicals 9.3.4.2 Band selection specifically for the retrieval of biochemicals 9.4 Extraction of vertical distribution of biochemical components in vegetation using hyperspectral lidar 9.4.1 Study on vertical extraction of vegetation characteristics using hyperspectral lidar 9.4.2 Experiment and data processing of hyperspectral lidar instruments 9.4.2.1 Hyperspectral lidar instruments 9.4.2.2 Experiments and data processing 9.4.2.3 Hyperspectral lidar point cloud data 9.4.3 Inversion method and results of vertical distribution of vegetation biochemical components 9.4.3.1 Relationship between biochemical components and hyperspectral lidar 9.4.3.2 Vertical distribution of vegetation index of hyperspectral lidar 9.4.3.3 Vertical distribution of biochemical components 9.5 Summary References Further reading 10 - Leaf area index 10.1 Definitions 10.1.1 Direct leaf area index measurement 10.1.2 Indirect leaf area index estimation 10.1.2.1 Indirect contact method 10.1.2.2 Indirect optical method 10.2 Statistical methods 10.3 Canopy model inversion methods 10.3.1 Radiative transfer modeling 10.3.1.1 A brief introduction to the models 10.3.1.2 SAILH model–based simulation 10.3.1.3 The 3D radiative transfer model 10.3.2 Optimization techniques 10.3.2.1 Minimization in one or multiple dimensions 10.3.2.2 Nonderivative and derivative methods 10.3.3 Neural networks 10.3.3.1 CYCLOPES leaf area index algorithm 10.3.3.2 GLASS LAI algorithm 10.3.4 Genetic algorithms 10.3.4.1 Introduction 10.3.4.2 The application of the GA in LAI retrieval 10.3.5 Bayesian networks 10.3.5.1 A brief introduction to Bayesian networks 10.3.5.2 The application of Bayesian network in LAI retrieval 10.3.6 Lookup table methods 10.4 Data assimilation methods 10.4.1 Variational assimilation methods 10.4.2 The sequential data assimilation algorithm 10.5 LAI retrieval from lidar data 10.5.1 Retrieving LAI from FAVD 10.5.2 Retrieving leaf area index from gap fraction 10.6 Global and regional leaf area index products 10.6.1 Major global moderate-resolution leaf area index products 10.6.2 Leaf area index climatology 10.7 Summary References 11 - Fraction of absorbed photosynthetically active radiation 11.1 Introduction 11.2 FAPAR estimation method 11.2.1 Empirical methods 11.2.2 MODIS FAPAR product algorithm 11.2.3 JRC_FAPAR product algorithm 11.2.4 Four-stream radiative transfer model 11.2.5 GLASS FAPAR algorithm 11.3 FAPAR product intercomparison and validation 11.3.1 Intercomparison of FAPAR products over the globe 11.3.2 Intercomparisons over different land cover types 11.3.3 Comparison with FAPAR values derived from high-resolution reference maps 11.4 Spatiotemporal analysis and applications 11.5 Summary References 12 - Fractional vegetation cover 12.1 Introduction 12.2 Field measurements of fractional vegetation cover 12.2.1 Visual estimation 12.2.1.1 The traditional method 12.2.1.2 The digital image method 12.2.1.3 The grid method 12.2.2 Sampling method 12.2.2.1 The belt transect sampling method 12.2.2.2 The point count sampling method 12.2.2.2.1 Needle sampling method 12.2.2.2.2 Square frame sampling method 12.2.2.2.3 Lookup sampling method 12.2.2.3 The shadow sampling method 12.2.2.4 The canopy projection method 12.2.3 Optical measuring instruments 12.2.3.1 Spatial quantum sensor and traversing quantum sell 12.2.3.2 Digital photography 12.2.3.3 LAI-2000 indirect measurement 12.2.4 Examples of field measurement 12.2.4.1 Examples of noninstrumental measurements 12.2.4.1.1 Grassland 12.2.4.1.2 Forested land 12.2.4.1.3 Shrubbery 12.2.4.2 Examples of digital photography measurement 12.2.4.2.1 Selecting the photography environment 12.2.4.2.2 Fractional vegetation cover extraction from the classification of digital images 12.3 The remote sensing retrieval 12.3.1 Regression models 12.3.1.1 The linear regression model method 12.3.1.2 The nonlinear regression model method 12.3.2 The linear unmixing model 12.3.3 Machine learning methods 12.3.3.1 The neural network method 12.3.3.2 The decision tree method 12.3.3.3 The random forests regression method 12.3.3.4 The support vector machines 12.4 Current remote sensing products 12.5 Spatiotemporal change analysis of fractional vegetation cover 12.5.1 Challenges and prospects for fractional vegetation cover estimation References Further reading 13 - Vegetation height and vertical structure 13.1 Field measurement of vegetation height and vertical structure 13.1.1 Height of a single tree 13.1.2 Relationship between height and diameter at breast height 13.1.3 Estimation of average tree height at forest stand level 13.1.3.1 Conditioned average height 13.1.3.2 Average height weighted by basal area 13.1.3.3 Dominant average height 13.2 Small footprint lidar data 13.2.1 Principle of small footprint lidar 13.2.2 Segmentation of single tree and parameters estimation 13.2.3 Estimation of forest parameters at forest stand level 13.2.4 Large footprint lidar data 13.2.4.1 Principle of large footprint lidar and its application in forestry 13.2.5 Estimation of forest parameters from lidar waveform data 13.3 Vegetation canopy height and vertical structure from SAR data 13.3.1 Principle of interferometric SAR 13.3.2 Forest height estimation using multifrequency InSAR data 13.3.3 Retrieval of vegetation vertical structure from PolInSAR data 13.3.3.1 The principle of polarimetric SAR interferometry 13.3.3.2 Mode inversion for forest height estimation 13.3.3.2.1 Randomly oriented volume model 13.3.3.2.2 ROVG model with specular reflection from ground 13.3.3.2.3 Three-step method of forest height estimation 13.3.3.2.4 Polarization coherence tomography 13.3.4 Forest height from radargrammetry 13.4 Vegetation canopy height and vertical structure from airborne stereoscopic images 13.5 Future perspectives References 14 - Aboveground biomass 14.1 Introduction 14.2 Allometric methods 14.3 Optical remote sensing methods 14.3.1 Using vegetation indices 14.3.2 Multivariate regression analysis 14.3.3 kNN methods 14.3.3.1 Overview 14.3.3.2 Assumption 14.3.3.3 Method description 14.3.3.4 Number of neighbors 14.3.4 Artificial neural networks 14.3.4.1 Principle 14.3.4.2 Limitations 14.4 Active and stereoscopic remote sensing methods 14.4.1 Lidar data 14.4.1.1 Small-footprint lidar 14.4.1.2 Large-footprint lidar 14.4.2 SAR data 14.4.2.1 Backscattering coefficients 14.4.2.2 Interferometric SAR 14.4.3 Spaceborne stereoscopic images 14.5 Synthesis methods of multisource data 14.5.1 Regression models 14.5.2 Nonparametric algorithms 14.5.2.1 Segmentation and biomass allocation 14.5.2.2 Random forest method 14.5.2.3 Maximum entropy model 14.5.2.4 Support vector regression 14.5.3 Multisource remote sensing data 14.6 Future perspective References Further reading 15 - Estimate of vegetation production of terrestrial ecosystem 15.1 Concept of vegetation production 15.2 Ground observation of vegetation production 15.2.1 Biological approach 15.2.1.1 Measurement of primary production of vegetation in grassland ecosystem 15.2.1.2 Measurement of primary production of vegetation in forest ecosystem 15.2.1.2.1 Measurement of primary production in tree layer 15.2.1.2.2 Measurement of primary production of shrub layer 15.2.1.2.3 Measurement of primary production of herbaceous layer 15.2.2 Eddy covariance 15.3 Statistical models based on vegetation index 15.4 Light use efficiency model based on remote sensing data 15.4.1 Principles for light use efficiency model 15.4.2 Major light use efficiency model 15.4.2.1 CASA model 15.4.2.2 CFix model 15.4.2.3 CFlux model 15.4.2.4 EC-LUE model 15.4.2.5 GLO-PEM 15.4.2.6 MODIS-GPP product 15.4.2.7 VPM 15.4.2.8 Two-leaf model 15.4.3 Disparities among diverse light use efficiency models 15.4.4 Defects of light use efficiency models 15.4.4.1 Difficulty in estimating net primary production 15.4.4.2 Difference in light use efficiency under the effect of scattering and direct solar radiation 15.4.4.3 Influence of forest disturbance on GPP estimates 15.5 Potential of sun-induced chlorophyll fluorescence for vegetation production estimates 15.6 Dynamic global vegetation models 15.6.1 Brief introduction to dynamic global vegetation models 15.6.2 Application of remote sensing data in dynamic global vegetation models 15.6.2.1 Land cover map 15.6.2.2 Leaf area index 15.6.2.3 Model-driven data 15.7 Temporal and spatial distribution pattern of global vegetation productivity 15.8 Global gross primary production product 15.8.1 Input data 15.8.2 Brief introduction to global gross primary production product 15.8.2.1 General information 15.8.2.2 Model algorithm description 15.8.2.3 Model validation and accuracy 15.9 Summary References 16 - Precipitation 16.1 Introduction 16.2 Surface measurement techniques 16.2.1 Rain gauge network 16.2.2 Ground-based radar 16.3 Estimation from satellite data 16.3.1 VIS/IR algorithms 16.3.2 Passive microwave algorithms 16.3.3 Active microwave algorithms 16.3.4 Multisensor algorithms 16.4 Global and regional datasets 16.4.1 Tropical Rainfall Measuring Mission 16.4.2 Global Satellite Mapping of Precipitation 16.4.3 Global Precipitation Climatology Project 16.4.4 Global Precipitation Measurement 16.4.5 Climate Prediction Center Morphing 16.5 Global precipitation climatology 16.6 Summary References 17 - Terrestrial evapotranspiration 17.1 Introduction 17.2 Basic theories of λE 17.2.1 The Monin–Obukhov similarity theory 17.2.2 The Penman–Monteith equation 17.3 Satellite λE algorithms 17.3.1 One-source models 17.3.2 Two-source models 17.3.3 Ts-VI space methods 17.3.4 Empirical models 17.3.5 The empirical Penman–Monteith equation 17.3.6 Assimilation methods and temporal scaling up 17.4 Observations for algorithm calibration and validation 17.4.1 Eddy covariance technique 17.4.2 Energy balance Bowen ratio method 17.4.3 The scintillometer method 17.4.4 Terrestrial water budget method 17.5 The spatiotemporal characteristics of global and regional λE 17.6 Conclusions and discussion Acknowledgments References 18 - Soil moisture contents 18.1 Introduction 18.2 Conventional SMC measurement techniques 18.3 Microwave remote sensing methods 18.3.1 Passive microwave remote sensing 18.3.1.1 Basic principles 18.3.1.2 Satellite sensors 18.3.1.3 Inversion algorithms 18.3.1.3.1 AMSE-R instrument algorithm 18.3.1.3.2 Land Parameter Retrieval Model (LPRM) 18.3.2 Active microwave remote sensing 18.3.2.1 Basic principles 18.3.2.2 Satellite sensors 18.3.2.3 Inversion methods 18.4 Optical and thermal infrared remote sensing methods 18.4.1 The triangle method 18.4.2 The trapezoid method 18.4.3 Temperature–vegetation dryness index 18.4.4 The thermal inertia method 18.5 Estimation of soil moisture profile 18.6 Comparison of different remote sensing techniques 18.7 Available datasets and spatial and temporal variations 18.7.1 Ground point measurements 18.7.2 Microwave remote sensing 18.7.2.1 AMSR-E/Aqua daily L3 surface soil moisture 18.7.2.2 VUA-NASA soil moisture products 18.7.2.3 Scatterometer-derived soil moisture product from the Vienna University of Technology 18.7.2.4 Soil Moisture and Ocean Salinity 18.7.2.5 Soil Moisture Active and Passive 18.7.2.6 ESA soil moisture ECV products 18.7.3 LSM estimates with observation-based forcing 18.8 Conclusions References 19 - Snow water equivalent 19.1 Snow water equivalent ground measurement method 19.2 Snow microwave scattering and emission modeling 19.2.1 Semiempirical models 19.2.1.1 Helsinki University of Technology model 19.2.1.2 Microwave emission model for layered snowpack model 19.2.2 Analytical models 19.2.3 Numerical models 19.3 Microwave snow water equivalent retrieval techniques 19.3.1 Snow water equivalent inversion techniques using passive microwave remote sensing 19.3.1.1 Semiempirical algorithms 19.3.1.1.1 Static algorithms 19.3.1.1.1.1 The Chang (1987) algorithm (the NASA algorithm) 19.3.1.1.1.2 The Foster et al. (1997) algorithm (the NASA 96 algorithm) 19.3.1.1.1.3 The Foster et al. (2005) algorithm 19.3.1.1.1.4 The Derksen et al. (2005) algorithm (the Canada algorithm) 19.3.1.1.1.5 The snow depth estimation algorithms in China 19.3.1.1.2 Dynamic algorithms 19.3.1.1.2.1 The temperature gradient index dynamic algorithm 19.3.1.1.2.2 The Kelly et al. (2003) dynamic algorithm 19.3.1.1.2.3 Later development of the TGI algorithm: a combined static and dynamic algorithm 19.3.1.1.2.4 Kelly (2009) dynamic algorithm 19.3.1.2 Physically based statistical algorithm 19.3.1.3 Iterative algorithms 19.3.1.4 Lookup table algorithms 19.3.1.5 Machine learning algorithms 19.3.1.6 Data assimilation methods 19.3.1.7 The mixed-pixel problem in the passive microwave SWE retrieval 19.3.2 Active snow water equivalent inversion algorithms 19.3.2.1 Snow water equivalent inversion algorithm based on physical backscattering models 19.3.2.1.1 Snow water equivalent retrieval algorithm based on multifrequency (L/C/X) radar observations 19.3.2.1.2 Snow water equivalent retrieval algorithm based on X- and Ku-band radar observations 19.3.2.2 Estimation of SWE and its variation by repeat-pass interferometric SAR 19.4 Optical remote sensing techniques 19.4.1 Snow cover fraction estimation using subpixel decomposition method 19.4.2 The empirical algorithm to estimate snow depth 19.4.3 The SWE reconstruction algorithm combined with the snowmelt model 19.5 Snow water equivalent product and applications 19.5.1 Snow water equivalent products 19.5.2 Snow spatiotemporal distribution characteristics 19.5.3 Snow water equivalent Product application 19.5.3.1 Hydrological applications 19.5.3.2 Meteorological applications 19.5.3.3 Biological applications 19.5.3.4 Economical applications 19.6 Summary References Further reading 20 - Water storage 20.1 Introduction 20.2 Water balance–based estimation 20.3 Surface parameter–based estimation 20.3.1 Principles 20.3.2 Satellite-derived water surface area 20.3.2.1 Optical satellite sensors 20.3.2.2 Active microwave sensors 20.3.2.3 Passive microwave sensors 20.3.2.4 Combination of multisatellite sensors 20.3.3 Satellite-derived water level 20.3.3.1 Water level/area relationship method 20.3.3.2 Land–water contact method 20.3.3.3 Satellite altimetry method 20.3.4 Applications 20.4 GRACE-based estimation 20.4.1 GRACE satellite 20.4.2 Principles 20.4.3 GRACE dataset and applications 20.5 Summary References 21 - High-level land product integration methods 21.1 Introduction 21.1.1 Overview of product integration methods 21.1.2 A toy model of product integration 21.2 Geostatistics methods 21.2.1 Introduction to stochastic process 21.2.2 Optimal interpolation 21.2.2.1 Application of optimal interpolation in product integration 21.2.2.2 A case study 21.2.3 Bayesian maximum entropy 21.2.3.1 Application of Bayesian maximum entropy to product integration 21.3 Multiresolution tree 21.3.1 Methodology 21.3.2 A case study with leaf area index 21.3.3 A case study with albedo 21.4 Empirical orthogonal function–based methods 21.4.1 Introduction to Data Interpolating Empirical Orthogonal Functions method 21.4.2 Application of DINEOF in product integration 21.4.2.1 A case study on leaf area index 21.5 Summary References 22 - Data production and management system 22.1 Remote sensing ground system 22.1.1 NASA\'s Earth Observation System Data and Information System 22.1.2 European remote sensing satellite ground system 22.2 Data production system 22.2.1 Production task management 22.2.1.1 Task list formulation 22.2.1.2 Task list checking 22.2.1.3 Task list execution 22.2.1.4 Task list resetting 22.2.1.5 Task list cancellation 22.2.1.6 Task list priority setting 22.2.1.7 Display of task list execution status 22.2.1.8 Display of computational resource status 22.2.2 High-performance computing 22.2.3 Data quality inspection 22.2.3.1 Construction of quality inspection database 22.2.3.2 Algorithm module integration 22.2.3.3 Construction of user feedback mechanism 22.2.4 System monitoring 22.2.5 Data management 22.2.6 Product data management 22.2.7 Product metadata management 22.3 Cloud computing–based integration of data management and analytics 22.3.1 Components of the Google Earth Engine system 22.3.1.1 Data management system 22.3.1.2 Calculation engine system 22.3.1.3 Programming interface 22.3.1.4 User interface system 22.4 Summary References Further reading 23 - Urbanization: monitoring and impact assessment 23.1 Introduction 23.2 Urban area monitoring 23.2.1 Mapping urban areas 23.2.1.1 Mapping by optical remote sensing 23.2.1.2 Mapping by nighttime remotely sensed light data 23.2.2 Monitoring urban growth 23.3 Urban ecological environment monitoring 23.3.1 Urban vegetation monitoring 23.3.2 Estimation of carbon storage and sequestration by urban forests 23.4 Study on the impact of urbanization 23.4.1 The effects of urbanization on vegetation growth season 23.4.2 Impact of urbanization on net primary productivity 23.4.3 The influence of urbanization on land surface parameters and environment 23.4.4 Urban heat island effects 23.4.5 Impact of urbanization on air quality 23.5 Summary References 24 - Remote sensing application in agriculture 24.1 Introduction 24.2 Cropland information extracting 24.2.1 Cropland mapping 24.2.2 Monitoring cropland change 24.2.3 Agricultural irrigation 24.3 Crop yield prediction 24.3.1 Rice yield prediction by using NOAA-AVHRR NDVI and historical rice yield data 24.3.2 A production efficiency model–based method for satellite estimates of corn and soybean yields 24.4 Drought monitoring of crop 24.4.1 Analysis of agricultural drought using vegetation temperature condition index 24.4.2 Monitoring agricultural drought using multisensor remote sensing data 24.5 Crop residue monitoring 24.5.1 Crop residue cover 24.5.2 Crop residue burning 24.6 The impact from cropland 24.6.1 Irrigation impacts on land surface parameters 24.6.2 Impacts of cropland on surface temperature 24.6.3 Impact of crop residue burning 24.7 Response of crops to climate change 24.7.1 Effects of extreme heat on wheat growth 24.7.2 Effects of changes in humidity and temperature on crops 24.8 Summary References Further reading 25 - Forest cover changes: mapping and climatic impact assessment 25.1 Introduction 25.2 Mapping forest change 25.2.1 Change detection based on forest cover mapping 25.2.2 Techniques using temporal landsat imagery 25.2.3 MODIS vegetation continuous fields products 25.2.4 FAO FRA 2010 remote sensing survey 25.3 Qualifying the climatic effects of forest change 25.3.1 Greenhouse gases 25.3.2 Temperature 25.3.3 Precipitation 25.4 Case studies 25.4.1 Deforestation in the Amazon Basin 25.4.1.1 Deforestation in the Amazon Basin 25.4.1.2 The drivers of deforestation 25.4.1.3 Deforestation alters the energy and water balance 25.4.1.4 Deforestation case 25.4.2 Forest disturbance in China 25.4.2.1 Historical forest cover change 25.4.2.2 Forestry influence in China 25.5 Conclusions References Index A B C D E F G H I J K L M N O P Q R S T U V W X Z Back Cover