دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: Rainer Dick
سری: Graduate Texts in Physics
ISBN (شابک) : 9783030578695
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 832
[816]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Advanced Quantum Mechanics: Materials and Photons به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک کوانتومی پیشرفته: مواد و فوتون ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی که اکنون در نسخه سوم توسعه یافته است، بر اهمیت مکانیک کوانتومی پیشرفته برای علم مواد و تمام تکنیکهای تجربی که از جذب، گسیل یا پراکندگی فوتون استفاده میکنند، تأکید میکند. جنبههای مهم مکانیک کوانتومی مقدماتی در هفت فصل اول پوشش داده شده است تا این موضوع برای مخاطبان گستردهای قابل دسترسی باشد. مکانیک کوانتومی پیشرفته: مواد و فوتونها بنابراین میتوان برای دورههای پیشرفته کارشناسی و دورههای مقدماتی فارغالتحصیل که برای دانشآموزانی با سوابق تحصیلی متنوع از علوم طبیعی یا مهندسی هدف قرار میگیرد، استفاده کرد. برای تقویت این جنبه فراگیر در دسترسی هرچه بیشتر به موضوع، مقدمهای بر مکانیک لاگرانژی و فرمول کوواریانت الکترودینامیک در ضمیمهها ارائه شده است.
این ویرایش سوم شامل 60 تمرین جدید، تصاویر جدید و بهبودیافته، و مطالب جدید در مورد تفسیر مکانیک کوانتومی سایر ویژگی های خاص شامل مقدمه ای بر نظریه میدان لاگرانژی و بحث یکپارچه از دامنه های انتقال با حالت های اولیه یا نهایی گسسته یا پیوسته است. هنگامی که دانش آموزان درک درستی از مکانیک کوانتومی پایه و نظریه میدان کلاسیک به دست آوردند، کوانتیزاسیون میدان متعارف آسان است. علاوه بر این، بحث یکپارچه دامنههای انتقال به طور طبیعی به مفاهیم احتمالات انتقال، نرخ فروپاشی، سطح مقطع جذب و مقاطع پراکندگی منجر میشود که برای همه تکنیکهای تجربی که از پروبهای فوتون استفاده میکنند، مهم هستند.
This textbook, now in an expanded third edition, emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics: Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, introductions to Lagrangian mechanics and the covariant formulation of electrodynamics are provided in appendices.
This third edition includes 60 new exercises, new and improved illustrations, and new material on interpretations of quantum mechanics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition amplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes.
Preface Contents To the Students To the Instructor 1 The Need for Quantum Mechanics 1.1 Electromagnetic Spectra and Discrete Energy Levels 1.2 Blackbody Radiation and Planck's Law 1.3 Blackbody Spectra and Photon Fluxes 1.4 The Photoelectric Effect 1.5 Wave-Particle Duality 1.6 Why Schrödinger's Equation? 1.7 Interpretation of Schrödinger's Wave Function 1.8 Problems 2 Self-Adjoint Operators and Eigenfunction Expansions 2.1 The δ Function and Fourier Transforms Sokhotsky–Plemelj Relations 2.2 Self-Adjoint Operators and Completeness of Eigenstates 2.3 Problems 3 Simple Model Systems 3.1 Barriers in Quantum Mechanics 3.2 Box Approximations for Quantum Wells, Quantum Wires and Quantum Dots Energy Levels in a Quantum Well Energy Levels in a Quantum Wire Energy Levels in a Quantum Dot Degeneracy of Quantum States 3.3 The Attractive δ Function Potential 3.4 Evolution of Free Schrödinger Wave Packets The Free Schrödinger Propagator Width of Gaussian Wave Packets Free Gaussian Wave Packets in Schrödinger Theory 3.5 Problems 4 Notions from Linear Algebra and Bra-Ket Notation 4.1 Notions from Linear Algebra Tensor Products Dual Bases Decomposition of the Identity An Application of Dual Bases in Solid State Physics: The Laue Conditions for Elastic Scattering off a Crystal Bra-ket Notation in Linear Algebra 4.2 Bra-ket Notation in Quantum Mechanics 4.3 The Adjoint Schrödinger Equation and the Virial Theorem 4.4 Problems 5 Formal Developments 5.1 Uncertainty Relations 5.2 Frequency Representation of States 5.3 Dimensions of States 5.4 Gradients and Laplace Operators in General CoordinateSystems 5.5 Separation of Differential Equations 5.6 Problems 6 Harmonic Oscillators and Coherent States 6.1 Basic Aspects of Harmonic Oscillators 6.2 Solution of the Harmonic Oscillator by the Operator Method 6.3 Construction of the x-Representation of the Eigenstates Oscillator Eigenstates in k Space and Bilinear Relations for Hermite Polynomials 6.4 Lemmata for Exponentials of Operators 6.5 Coherent States Scalar Products and Overcompleteness of Coherent States Squeezed States 6.6 Problems 7 Central Forces in Quantum Mechanics 7.1 Separation of Center of Mass Motion and Relative Motion 7.2 The Concept of Symmetry Groups 7.3 Operators for Kinetic Energy and Angular Momentum 7.4 Matrix Representations of the Rotation Group The Defining Representation of the Three-Dimensional Rotation Group The General Matrix Representations of the Rotation Group 7.5 Construction of the Spherical Harmonic Functions 7.6 Basic Features of Motion in Central Potentials 7.7 Free Spherical Waves: The Free Particle with Sharp Mz, M2 Asymptotically Free Angular Momentum Eigenstates 7.8 Bound Energy Eigenstates of the Hydrogen Atom 7.9 Spherical Coulomb Waves 7.10 Problems 8 Spin and Addition of Angular Momentum Type Operators 8.1 Spin and Magnetic Dipole Interactions 8.2 Transformation of Scalar, Spinor, and Vector Wave Functions Under Rotations 8.3 Addition of Angular Momentum Like Quantities 8.4 Problems 9 Stationary Perturbations in Quantum Mechanics 9.1 Time-Independent Perturbation Theory Without Degeneracies First Order Corrections to the Energy Levels and Eigenstates Recursive Solution of Eq.(9.12) for n≥1 Second Order Corrections to the Energy Levels and Eigenstates Summary of Non-degenerate Perturbation Theory in Second Order 9.2 Time-Independent Perturbation Theory With Degenerate Energy Levels First Order Corrections to the Energy Levels First Order Corrections to the Energy Eigenstates Recursive Solution of Eq.(9.31) for n≥1 Summary of First Order Shifts of the Level Ei(0) if the Perturbation Lifts the Degeneracy of the Level 9.3 Problems 10 Quantum Aspects of Materials I 10.1 Bloch's Theorem Orthogonality of the Periodic Bloch Factors 10.2 Wannier States 10.3 Time-Dependent Wannier States 10.4 The Kronig-Penney Model 10.5 kp Perturbation Theory and Effective Mass 10.6 Problems 11 Scattering Off Potentials 11.1 The Free Energy-Dependent Green's Function 11.2 Potential Scattering in the Born Approximation The Optical Theorem Scattering Phase Shifts 11.3 Scattering Off a Hard Sphere 11.4 Rutherford Scattering Form Factors Mott-Gordon States Revisited 11.5 Problems 12 The Density of States 12.1 Counting of Oscillation Modes The Reasoning with Periodic Boundary Conditions in a Finite Volume The Reasoning Based on the Completeness of Plane Wave States 12.2 The Continuum Limit Another Reasoning for the Continuum Limit Different Forms of the Density of States in a Homogeneous Medium 12.3 The Density of States in the Energy Scale 12.4 Density of States for Free Non-relativistic Particles and for Radiation 12.5 The Density of States for Other Quantum Systems 12.6 Problems 13 Time-Dependent Perturbations in Quantum Mechanics 13.1 Pictures of Quantum Dynamics Time Evolution in the Schrödinger Picture The Time Evolution Operator for the Harmonic Oscillator The Heisenberg Picture 13.2 The Dirac Picture Dirac Picture for Constant H0 13.3 Transitions Between Discrete States Møller Operators First Order Transition Probability Between Discrete Energy Eigenstates 13.4 Transitions from Discrete States into Continuous States: Ionization or Decay Rates Ionization probabilities for hydrogen The Golden Rule for Transitions from Discrete States into a Continuum of States Time-Dependent Perturbation Theory in Second Order and the Golden Rule #1 13.5 Transitions from Continuous States into Discrete States: Capture Cross Sections Calculation of the Capture Cross Section 13.6 Transitions Between Continuous States: Scattering Cross Section for Scattering Off a Periodic Perturbation Scattering Theory in Second Order 13.7 Expansion of the Scattering Matrix to Higher Orders 13.8 Energy-Time Uncertainty 13.9 Problems 14 Path Integrals in Quantum Mechanics 14.1 Correlation and Green's Functions for Free Particles 14.2 Time Evolution in the Path Integral Formulation 14.3 Path Integrals in Scattering Theory 14.4 Problems 15 Coupling to Electromagnetic Fields 15.1 Electromagnetic Couplings Multipole Moments Semiclassical Treatment of the Matter-Radiation System in the Dipole Approximation Dipole Selection Rules 15.2 Stark Effect and Static Polarizability Tensors Linear Stark Effect Quadratic Stark Effect and the Static Polarizability Tensor 15.3 Dynamical Polarizability Tensors Oscillator Strength Thomas-Reiche-Kuhn Sum Rule (f-Sum Rule) for the Oscillator Strength Tensorial Oscillator Strengths and Sum Rules 15.4 Problems 16 Principles of Lagrangian Field Theory 16.1 Lagrangian Field Theory The Lagrange Density for the Schrödinger Field 16.2 Symmetries and Conservation Laws Energy-Momentum Tensors 16.3 Applications to Schrödinger Field Theory Probability and Charge Conservation from Invariance Under Phase Rotations 16.4 Problems 17 Non-relativistic Quantum Field Theory 17.1 Quantization of the Schrödinger Field Time Evolution of the Field Operators k-Space Representation of Quantized Schrödinger Theory Field Operators in the Schrödinger Picture and the Fock Space for the Schrödinger Field Time-Dependence of H0 17.2 Time Evolution for Time-Dependent Hamiltonians 17.3 The Connection Between First and Second Quantized Theory General 1-Particle States and Corresponding Annihilation and Creation Operators in Second Quantized Theory Time Evolution of 1-Particle States in Second Quantized Theory 17.4 The Dirac Picture in Quantum Field Theory 17.5 Inclusion of Spin 17.6 Two-Particle Interaction Potentials and Equations of Motion Equation of Motion Relation to Other Equations of Motion 17.7 Expectation Values and Exchange Terms 17.8 From Many Particle Theory to Second Quantization 17.9 Problems 18 Quantization of the Maxwell Field: Photons 18.1 Lagrange Density and Mode Expansion for the Maxwell Field Energy-Momentum Tensor for the Free Maxwell Field 18.2 Photons 18.3 Coherent States of the Electromagnetic Field 18.4 Photon Coupling to Relative Motion 18.5 Energy-Momentum Densities and Time Evolution in Quantum Optics 18.6 Photon Emission Rates Evaluation of the Transition Matrix Element in the Dipole Approximation Energy-Time Uncertainty for Photons 18.7 Photon Absorption Photon Absorption into Discrete States Photon Absorption into Continuous States Photon Absorption Coefficients 18.8 Stimulated Emission of Photons 18.9 Photon Scattering Thomson Cross Section Rayleigh Scattering 18.10 Problems 19 Epistemic and Ontic Quantum States 19.1 Stern-Gerlach Experiments 19.2 Non-locality from Entanglement? 19.3 Quantum Jumps and the Continuous Evolution of Quantum States 19.4 Photon Emission Revisited 19.5 Particle Location 19.6 Problems 20 Quantum Aspects of Materials II 20.1 The Born-Oppenheimer Approximation 20.2 Covalent Bonding: The Dihydrogen Cation 20.3 Bloch and Wannier Operators 20.4 The Hubbard Model 20.5 Vibrations in Molecules and Lattices Normal Coordinates and Normal Oscillations Eigenmodes of Three Masses The Diatomic Linear Chain Quantization of N-particle Oscillations 20.6 Quantized Lattice Vibrations: Phonons 20.7 Electron-Phonon Interactions 20.8 Problems 21 Dimensional Effects in Low-Dimensional Systems 21.1 Quantum Mechanics in d Dimensions 21.2 Inter-Dimensional Effects in Interfaces and Thin Layers Two-Dimensional Behavior from a Thin Quantum Well 21.3 Problems 22 Relativistic Quantum Fields 22.1 The Klein-Gordon Equation Mode Expansion and Quantization of the Klein-Gordon Field The Charge Operator of the Klein-Gordon Field Hamiltonian and Momentum Operators for the Klein-Gordon Field Non-relativistic Limit of the Klein-Gordon Field 22.2 Klein's Paradox 22.3 The Dirac Equation Solutions of the Free Dirac Equation Charge Operators and Quantization of the Dirac Field 22.4 The Energy-Momentum Tensor for Quantum Electrodynamics Energy and Momentum in QED in Coulomb Gauge 22.5 The Non-relativistic Limit of the Dirac Equation Higher Order Terms and Spin-Orbit Coupling 22.6 Covariant Quantization of the Maxwell Field 22.7 Problems 23 Applications of Spinor QED 23.1 Two-Particle Scattering Cross Sections Measures for Final States with Two Identical Particles 23.2 Electron Scattering off an Atomic Nucleus 23.3 Photon Scattering by Free Electrons 23.4 Møller Scattering 23.5 Problems A Lagrangian Mechanics Derivation of the Lagrange Equations for the Generalized Coordinates qa from d'Alembert's Principle Symmetries and Conservation Laws in Classical Mechanics B The Covariant Formulation of Electrodynamics Lorentz Transformations The Manifestly Covariant Formulation of Electrodynamics Relativistic Mechanics Classical Electromagnetic Hamiltonian in Coulomb Gauge Classical Electromagnetic Hamiltonian in Lorentz Gauge Relativistic Center of Mass Frame C Completeness of Sturm–Liouville Eigenfunctions Sturm–Liouville Problems Liouville's Normal Form of Sturm's Equation Nodes of Sturm–Liouville Eigenfunctions Sturm's Comparison Theorem and Estimates for the Locations of the Nodes yn(λ) Eigenvalue Estimates for the Sturm–Liouville Problem Completeness of Sturm–Liouville Eigenstates D Properties of Hermite Polynomials E The Baker–Campbell–Hausdorff Formula F The Logarithm of a Matrix G Dirac γ Matrices γ-Matrices in d Dimensions Proof that in Irreducible Representations 0,1,…d-11 for Odd Spacetime Dimension d Recursive Construction of γ-Matrices in Different Dimensions Proof That Every Set of γ-Matrices is Equivalent to a Set Which Satisfies Eq.(G.23) Uniqueness Theorem for γ Matrices Contraction and Trace Theorems for γ Matrices H Spinor Representations of the Lorentz Group Generators of Proper Orthochronous Lorentz Transformations in the Vector and Spinor Representations Verification of the Lorentz Commutation Relations for the Spinor Representations Scalar Products of Spinors and the Lagrangian for the Dirac Equation The Spinor Representation in the Weyl and Dirac Bases of γ-Matrices Construction of the Vector Representation from the Spinor Representation Construction of the Free Dirac Spinors from Spinors at Rest Lorentz Covariance of Charge Conjugation I Transformation of Fields Under Reflections J Green's Functions in d Dimensions Green's Functions for the Schrödinger Equation Polar Coordinates in d Dimensions The Time Evolution Operator in Various Representations Relativistic Green's Functions in d Spatial Dimensions Retarded Relativistic Green's Functions in (x,t) Representation Green's Functions for Dirac Operators in d Dimensions Green's Functions in Covariant Notation Green's Functions as Reproducing Kernels Liénard–Wiechert Potentials in Low Dimensions References Index