ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Polymer Nanocomposites: Science, Technology and Applications

دانلود کتاب نانوکامپوزیت های پلیمری پیشرفته: علم، فناوری و کاربردها

Advanced Polymer Nanocomposites: Science, Technology and Applications

مشخصات کتاب

Advanced Polymer Nanocomposites: Science, Technology and Applications

ویرایش:  
نویسندگان: , ,   
سری: Woodhead Publishing in Materials 
ISBN (شابک) : 0128244925, 9780128244920 
ناشر: Woodhead Publishing 
سال نشر: 2022 
تعداد صفحات: 584
[585] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 34 Mb 

قیمت کتاب (تومان) : 29,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Advanced Polymer Nanocomposites: Science, Technology and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوکامپوزیت های پلیمری پیشرفته: علم، فناوری و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانوکامپوزیت های پلیمری پیشرفته: علم، فناوری و کاربردها



نانوکامپوزیت های پلیمری پیشرفته: فناوری و کاربردهای علمی مروری دقیق از نتایج تحقیقات جدید و نوظهور از مفاهیم اساسی مرتبط با علم، فناوری و کاربردهای پیشرفته را ارائه می دهد. بخش‌ها محرک‌های کلیدی مانند افزایش تقاضا برای قطعات سبک وزن و با استحکام بالا، نیاز به مواد بسته‌بندی پایدار و حفظ طعم در صنایع غذایی، نوشیدنی‌ها و نوشیدنی‌ها و ابتکارات دفاعی مانند حفاظت بالستیک، تاخیر در آتش و محافظ الکترومغناطیسی را پوشش می‌دهند. با مشارکت نویسندگان بین المللی که در لبه های تحقیقاتی کار می کنند، این کتاب یک منبع مرجع ضروری برای دانشمندان مواد، شیمیدانان، تولید کنندگان و مهندسان پلیمر خواهد بود.

از طریق پیشرفت های اخیر. در فناوری نانو، محققان اکنون می توانند اتم ها را برای ایجاد مواد و محصولاتی دستکاری کنند که شیوه زندگی ما را تغییر می دهد. این مواد دارای خواص افزایش یافته ای مانند استحکام کششی، مقاومت در برابر ضربه و خراش، هدایت الکتریکی و حرارتی، پایداری حرارتی و مقاومت در برابر آتش هستند.


توضیحاتی درمورد کتاب به خارجی

Advanced Polymer Nanocomposites: Science Technology and Applications presents a detailed review of new and emerging research outcomes from fundamental concepts that are relevant to science, technology and advanced applications. Sections cover key drivers such as the rising demand for lightweight and high strength automotive parts, the need for sustainable packaging materials and conservation of flavor in the food, drinks and beverages industries, and defense initiatives such as ballistic protection, fire retardation and electromagnetic shielding. With contributions from international authors working at the cutting-edge of research, this book will be an essential reference resource for materials scientists, chemists, manufacturers and polymer engineers.

Through recent advances in nanotechnology, researchers can now manipulate atoms to create materials and products that are changing the way we live our lives. These materials have enhanced properties, such as tensile strength, impact and scratch resistance, electrical and thermal conductivity, thermal stability and fire resistance.



فهرست مطالب

Advanced Polymer Nanocomposites
Copyright
Contents
List of contributors
Preface
1 Fundamentals of polymer nanocomposites
	1.1 Introduction
		1.1.1 Polymers
		1.1.2 Polymer matrix composites
		1.1.3 Types of fiber reinforcements for polymer matrix composite
		1.1.4 Properties of materials: a comparison
		1.1.5 Polymer nanocomposites
		1.1.6 Advantages of adding nanofillers to a polymer matrix
		1.1.7 Problems associated with the addition of nanofillers
	1.2 Materials
		1.2.1 Matrix of polymer nanocomposites
		1.2.2 Nanofillers for polymer matrix
		1.2.3 Exceptional properties of nanofillers
	1.3 Fabrication of polymer nanocomposites
	1.4 Characterization of polymer nanocomposites
	1.5 Degradation of polymer nanocomposites
	1.6 Applications of polymer nanocomposites
	1.7 Conclusion
	1.8 Scope for future work
	Acknowledgments
	References
2 Rheology and crystallization of polymer nanocomposites
	2.1 Introduction
	2.2 Classification of nanofillers in polymer nanocomposites
	2.3 Use of nanofillers in nanocomposite materials
	2.4 Crystallization properties of polymer nanocomposites
	2.5 Rheology of polymer nanocomposites
	2.6 Conclusion
	References
3 Biological aspects of polymer nanocomposites
	3.1 Introduction
	3.2 Nanocomposites
	3.3 Biological aspects of nanocomposites
		3.3.1 Antibacterial aspects
		3.3.2 Drug delivery aspects
		3.3.3 Gene therapy aspects
		3.3.4 Tissue engineering aspects
		3.3.5 Biosensing aspects
		3.3.6 Bioimaging aspects
		3.3.7 Dental aspects
	3.4 Conclusion
	References
4 Electrical properties of polymer nanocomposites
	4.1 Introduction
	4.2 Materials and method
		4.2.1 Materials
		4.2.2 Preparation of sugarcane nanocellulose fiber
		4.2.3 Fabrication of Al-SiC nanoparticles
		4.2.4 Production of sugarcane nanocellulose/Al-SiC epoxy hybrid composites
	4.3 Epoxy polymer nanocomposite characterization
		4.3.1 Electrical properties
		4.3.2 Dielectric properties
	4.4 Results and discussion
		4.4.1 Space charge distribution
		4.4.2 Direct current conductance analysis
		4.4.3 Direct current breakdown
		4.4.4 Dielectric properties
	4.5 Conclusion and future perspective
	References
5 Optical properties of polymer nanocomposites
	5.1 Introduction
	5.2 Production method
	5.3 Characterization techniques
	5.4 Optical properties of polymer nanocomposites
	5.5 Conclusion
	References
6 Thermal properties of polymer nanocomposites
	6.1 Introduction
	6.2 Thermal properties of polymers and polymer nanocomposites—terms, definitions, significance
		6.2.1 Definitions and significance
			6.2.1.1 Melting point and glass transition temperature
			6.2.1.2 Thermal conductivity
			6.2.1.3 Specific heat
			6.2.1.4 Thermal diffusivity
			6.2.1.5 Coefficient of linear thermal expansion
			6.2.1.6 Thermal stability
	6.3 Principal and techniques of thermal analysis
		6.3.1 Introduction
		6.3.2 Differential scanning calorimetry/calorimeter
		6.3.3 Heat-flux differential scanning calorimetry
		6.3.4 Power compensation differential scanning calorimetry
		6.3.5 Thermogravimetric analysis
		6.3.6 Thermomechanical analysis
		6.3.7 Dynamic mechanical analysis
		6.3.8 Thermoptometry
		6.3.9 Evolved gas detection and evolved gas analysis
	6.4 Polymeric nanocomposites and their mathematical models for reckoning the thermal conductivity
		6.4.1 Series, parallel, and geometric model
		6.4.2 Models on geometrical particle size
		6.4.3 Model based on the alignment of filler
		6.4.4 Effective medium theory
	6.5 Thermal properties of various polymeric materials and their Nanocomposites
		6.5.1 Thermal properties of thermoplastic polymer nanocomposites
		6.5.2 Thermal properties of epoxy and fiber-reinforced nanocomposite
		6.5.3 Recycled polymer nanocomposites
		6.5.4 Thermal properties of polymer blend nanocomposite
		6.5.5 Thermal properties of shape memory polymer nanocomposite
		6.5.6 Thermal properties of biopolymer nanocomposite
	6.6 Summary
	References
7 Life-cycle assessment of polymer nanocomposites
	7.1 Introduction
	7.2 Life-cycle assessment for nanotechnology
		7.2.1 Goal definition and scope
		7.2.2 Inventory analysis
		7.2.3 Impact assessment
		7.2.4 Interpretation
	7.3 Expected benefits of LCA for PNCs
	7.4 Limitation and challenges on nanocomposites LCA
	7.5 LCA of food packaging materials
	7.6 LCA of polymer nanocomposites for automobiles
	7.7 LCA of PNCs intended for different applications
		7.7.1 Graphite nanoplatelets-filled epoxy-based composite
		7.7.2 Polyacrylic acid and polyethylenimine-coated magnetic nanoparticles
		7.7.3 Silver-graphene oxide-reinforced polyvinylidene fluoride
		7.7.4 PNC in agricultural films
	7.8 Narrowing the limitations of LCA for PNC
	7.9 More research works to carry on
	7.10 Conclusion
	References
8 Polymer nanocomposites for biomedical applications
	8.1 Introduction
	8.2 Polymer nanocomposites and their preparation
	8.3 Antimicrobial activities of polymer nanocomposites
	8.4 Biocompatibility and biodegradation of polymer nanocomposites
	8.5 Polymer nanocomposites for biomedical applications
		8.5.1 Polymer nanocomposites in bioprinting
		8.5.2 Polymer nanocomposites in tissue engineering
		8.5.3 Polymer nanocomposites for drug delivery
		8.5.4 Polymer nanocomposites in biosensing applications
	8.6 Conclusion and future aspects
	References
9 Polymer nanocomposites for microelectronic devices and biosensors
	9.1 Introduction
	9.2 Optical devices
		9.2.1 Organic light-emitting diodes
			9.2.1.1 Improvement of efficiency
			9.2.1.2 Improvement of color emission
		9.2.2 Organic photovoltaic cells
	9.3 Supercapacitors
		9.3.1 Graphene and polyaniline composites
		9.3.2 Graphene and polypyrrole composites
		9.3.3 Graphene and poly(3,4-ethylenedioxythiophene) composites
	9.4 Strain sensor
		9.4.1 Silver nanoparticle–based strain sensor
		9.4.2 Silver nanowire–based strain sensor
		9.4.3 Silver nanoflower fiber–based strain sensor
		9.4.4 Graphene-based strain sensor
		9.4.5 Gold nanowire–based strain sensor
	9.5 Electrochemical sensor
		9.5.1 Conducting polymers/carbon nanoparticle–based sensors
		9.5.2 Conducting polymers/graphene-based sensors
		9.5.3 Conducting polymers/metal nanoparticle–based sensors
			9.5.3.1 Silver nanoparticles
			9.5.3.2 Palladium nanoparticles
			9.5.3.3 Platinum nanoparticles
			9.5.3.4 Gold nanoparticles
		9.5.4 Conducting polymers/metal oxide nanoparticle–based sensors
	9.6 Gas sensor
		9.6.1 Metal oxide–conducting polymer-based gas sensors
		9.6.2 Metal-conducting polymer-based gas sensors
		9.6.3 Carbon nanotube–conducting polymer-based gas sensors
		9.6.4 Graphene-conducting polymer-based gas sensors
	9.7 Temperature sensor
		9.7.1 Gas-filled cellular structures
		9.7.2 Cellulose–PPy nanocomposite
		9.7.3 Carbon nanotubes
		9.7.4 Nanowires
		9.7.5 Graphite-mixed nanocomposites
	9.8 Conclusions
	References
10 Polymer nanocomposites for adhesives and coatings
	10.1 Introduction
	10.2 Polymer nanocomposite coatings
		10.2.1 Fillers of polymer nanocomposite coatings
			10.2.1.1 Inorganic fillers and clay-based polymer nanocomposite coatings
		10.2.2 Carbon-based polymer nanocomposite coatings
		10.2.3 Preparation methods of polymer nanocomposite coatings
		10.2.4 Conductive polymer nanocomposite coatings
		10.2.5 Smart polymer nanocomposite coatings
		10.2.6 UV-cured polymer nanocomposite coatings
		10.2.7 Biocompatible and antimicrobial polymer nanocomposite coatings
	10.3 Polymer nanocomposite adhesives
		10.3.1 Epoxy-based high-performance nanocomposite adhesives
		10.3.2 Waterborne polyurethane nanocomposite adhesives
		10.3.3 Pressure-sensitive adhesives
		10.3.4 Hydrogel and biomimetic adhesives
		10.3.5 Conductive polymer nanocomposite adhesives
	10.4 Application of polymer nanocomposite coatings and adhesives
	10.5 Conclusion and future prospects
	References
11 Polymer nanocomposites for automotive applications
	11.1 Introduction
	11.2 Composite and nanocomposite
	11.3 Nano-advantage
	11.4 Polymer nanocomposite
	11.5 Advantageous properties of PNC
		11.5.1 Mechanical strength and toughness
		11.5.2 Thermal stability
		11.5.3 Chemical and barrier resistance
		11.5.4 Electrical activity
		11.5.5 Catalytic activity
		11.5.6 Optical activity
		11.5.7 Smart response
		11.5.8 Biological activity
	11.6 Limitations of PNCs
	11.7 Factors influencing the properties of polymer nanocomposites
	11.8 Types of nanoreinforcements
	11.9 Most commonly used polymer matrices and nanoparticles
		11.9.1 Polymer matrices [26]
		11.9.2 Nanoparticles [26]
			11.9.2.1 Polyhedral oligomeric silsesquioxane
	11.10 Applications of PNC in automotive sector
		11.10.1 Coatings
			11.10.1.1 Clear coatings
			11.10.1.2 Weather-resistant coatings
			11.10.1.3 Self-healing nanocomposites for automotive coatings
		11.10.2 Tire
			11.10.2.1 SBR/clay nanocomposite
			11.10.2.2 Epoxidized natural rubber/organoclay nanocomposite
			11.10.2.3 Butyl/clay nanocomposite
			11.10.2.4 Nanorubber
		11.10.3 Fuel cell and fuel tank
		11.10.4 Battery and battery packaging
		11.10.5 Mirror
		11.10.6 Glasses
		11.10.7 Lightweight purpose
		11.10.8 Gears
		11.10.9 Rear floor
		11.10.10 Seatbacks
		11.10.11 Timing belt cover
		11.10.12 Engine cover
		11.10.13 Miscellaneous
		11.10.14 Green nanocomposite
			11.10.14.1 Green composites in automotive sector
			11.10.14.2 Green nanofillers
			11.10.14.3 Green polymeric nanocomposites
		11.10.15 Recent research reports
	11.11 Challenges
	11.12 Potential steps for quick commercialization
	11.13 Conclusions
	Acknowledgments
	References
12 Polymer nanocomposites for road construction: investigating the aging performance of polymer and carbon nanotube–modifie...
	12.1 Introduction
	12.2 Background of current study
	12.3 CFM test protocol
		12.3.1 CFM tip functionalization
			12.3.1.1 Calibration of CFM tips
			12.3.1.2 Description of CNT
	12.4 Results and discussion
		12.4.1 Comparative study between SB and SBS
			12.4.1.1 Statistical analysis of CFM data for 4% SB and SBS (fresh and aged samples) with 0.5% CNT
	12.5 Conclusions
	12.6 Recommendation for future study
	Acknowledgment
	References
13 Polymer nanocomposites for energy
	13.1 Introduction
	13.2 Polymer nanocomposites as energy materials: terminology and annotations
		13.2.1 Dielectric constant/relative permittivity
		13.2.2 Dielectric loss
		13.2.3 Dielectric nonlinearity
		13.2.4 Breakdown strength
		13.2.5 Theory of percolation
	13.3 Novel PNC energy materials: basic concepts
		13.3.1 Selection of matrix phase of PNCs for energy application
		13.3.2 Selection of nanofillers of PNCs for energy applications
	13.4 Effect of interface on the dielectric properties of PNCs
		13.4.1 Tanaka’s theoretical model
		13.4.2 Lewis’s theoretical model
	13.5 Ferroelectric fluoropolymer-based PNCs as energy materials
	13.6 Graphene/graphene-based PNCs as energy materials
		13.6.1 Graphene–PANI nanocomposites
		13.6.2 Graphene–PPy nanocomposites
	13.7 Conclusion and prospects
	References
14 Polymer nanocomposites for defense applications
	14.1 Introduction
	14.2 Defense applications of polymer nanocomposites
		14.2.1 Smart military uniforms
		14.2.2 Impact and shock resistance/ballistic protection
			14.2.2.1 Lightweight military platforms and armors
		14.2.3 Optically transparent armor
		14.2.4 Acoustics absorption
		14.2.5 Signature reduction
		14.2.6 Thermal ablation/fire retardation
		14.2.7 Corrosion protection
		14.2.8 Explosives and propellants
		14.2.9 Wound care for soldiers
		14.2.10 Electromagnetic interference shielding
		14.2.11 Ultraviolet irradiation resistance
		14.2.12 Refractive index tuning
		14.2.13 Sensory applications
			14.2.13.1 Hazardous chemical detection
			14.2.13.2 Detection of explosives
			14.2.13.3 Other sensors
	14.3 Actuators for military robots
	14.4 Marine applications
	14.5 Military ration packaging (diffusion barrier)
	14.6 Water purification for defense
		14.6.1 Removal of heavy metallic ions
		14.6.2 Removal of dyes
		14.6.3 Desalination and removal of oil
		14.6.4 Removal of other pollutants
		14.6.5 Self-water purification system
	14.7 Conclusion
	References
	Further reading
15 Polymer nanocomposites for packaging
	15.1 Introduction
	15.2 Issues with traditional packaging system
	15.3 Advantages of polymer nanocomposites in packaging
		15.3.1 Barrier properties
		15.3.2 Mechanical properties
		15.3.3 Thermal properties
		15.3.4 Flame retardancy
		15.3.5 Optical properties
		15.3.6 Degradation properties
		15.3.7 Antimicrobial and antibacterial properties
	15.4 Polymer nanocomposites for packaging foods and beverages
	15.5 Polymer nanocomposites for packaging electronic components
	15.6 Toxicity of polymer nanocomposites
	15.7 Conclusions and future prospects
	References
16 Carbon-based polymer nanocomposites for electronic textiles (e-textiles)
	16.1 Introduction
	16.2 Functions of e-textiles
	16.3 Carbon-based materials for e-textiles
		16.3.1 Carbon derivatives
			16.3.1.1 Activated carbon
			16.3.1.2 Graphene
			16.3.1.3 Graphene oxide
			16.3.1.4 Carbon nanotube
			16.3.1.5 Carbon black
			16.3.1.6 Carbon fiber
	16.4 Fabrication techniques
		16.4.1 Fiber-based fabrication
		16.4.2 Yarn-based fabrication
		16.4.3 Fabric and garment-based fabrication
	16.5 Characterization techniques
		16.5.1 E-textile standardization
	16.6 Applications
		16.6.1 Fiber-based applications
		16.6.2 Yarn-based applications
		16.6.3 Fabric-based applications
		16.6.4 Recent modifications in e-textiles
	16.7 Health aspects of e-textiles
	16.8 Environmental aspects of e-textiles
	16.9 Recycle, reuse, and sustainability
	16.10 Conclusion and future stream
	References
17 Flame retardant nanofillers and its behavior in polymer nanocomposite
	17.1 Introduction
	17.2 Flame retardant nanomaterials
		17.2.1 Clay-based nanomaterials
		17.2.2 Metal-based nanomaterials
		17.2.3 Carbon-based nanomaterials
		17.2.4 Silicone-based nanomaterials
		17.2.5 Biobased nanomaterials
		17.2.6 Nitrogen-based nanoparticle
	17.3 Flame retardant polymer nanocomposite
	17.4 Flammability of polymer nanocomposite
	17.5 Heat release rate of flame retardant polymer nanocomposite
	17.6 Limiting oxygen index of flame retardant polymer nanocomposite materials
	17.7 Smoke toxicity analysis
	17.8 Applications of flame retardant polymer nanocomposite materials
		17.8.1 Aerospace
		17.8.2 Automotive
		17.8.3 Textile
		17.8.4 Building
	17.9 Future trend on flame retardant nanocomposite
	17.10 Summary and future directions
	Acknowledgments
	References
18 Innovativeness and sustainability of polymer nanocomposites
	18.1 Introduction
	18.2 Chitosan
		18.2.1 Chitosan polymer nanocomposites
		18.2.2 Polymer/chitosan/graphene nanocomposites
		18.2.3 Polymer/chitosan/nanoclay nanocomposites
		18.2.4 Polymer/chitosan/metal nanocomposites
	18.3 Cellulose
		18.3.1 Nanocellulose polymer nanocomposites
		18.3.2 Polymer/cellulose/graphene nanocomposites
		18.3.3 Polymer/cellulose/nanoclay nanocomposites
		18.3.4 Polymer/cellulose/metal nanocomposites
	18.4 Collagen
		18.4.1 Collagen polymer nanocomposites
		18.4.2 Polymer/collagen/silica nanocomposites
		18.4.3 Polymer/collagen/hydroxyapatite nanocomposites
		18.4.4 Polymer/collagen/metal nanocomposites
	18.5 Keratin
		18.5.1 Polymer/keratin/graphene nanocomposites
	18.6 Conclusions and future directions
	References
19 Industrial implementation of polymer-nanocomposites
	19.1 Introduction
	19.2 Applications and challenges of PNC industry
		19.2.1 Innovation challenge
		19.2.2 Processing challenge
		19.2.3 Scaling up challenge
	19.3 Business ecosystem
		19.3.1 Manufacturer
		19.3.2 Research and development
		19.3.3 Investor
		19.3.4 IP and consultancy
		19.3.5 Infrastructure
		19.3.6 Regulation
		19.3.7 Standardization
	19.4 PESTLE analysis
		19.4.1 Political variable
		19.4.2 Economic variable
		19.4.3 Social variable
		19.4.4 Technological variable
		19.4.5 Legal variable
		19.4.6 Environmental variable
	19.5 Conclusion
	References
20 Environmental and health impacts of polymer nanocomposites
	20.1 Introduction
	20.2 Polymer nanocomposites: an overview
		20.2.1 Definition and composition of polymer nanocomposites
		20.2.2 Types of polymer nanocomposites
			20.2.2.1 Nanoclay-reinforced composites
			20.2.2.2 Carbon nanotube-reinforced composites
			20.2.2.3 Carbon nanofiber-reinforced composites
			20.2.2.4 Inorganic particle-reinforced composites
		20.2.3 Features of polymer nanocomposites
	20.3 Applications of polymer nanocomposites in human health
		20.3.1 Polymer nanocomposites in pharmaceuticals
		20.3.2 Polymer nanocomposites in diagnosis and treatment of diseases
			20.3.2.1 Diagnosis and treatment of tumor and cancer
			20.3.2.2 Management of angioplasty
			20.3.2.3 Tissue engineering
			20.3.2.4 Wound healing
			20.3.2.5 Polymer nanocomposites in orthopedics
			20.3.2.6 Polymer nanocomposites in dentistry
			20.3.2.7 Polymer nanocomposites in eye problems
		20.3.3 Polymer nanocomposites in agriculture and nutraceuticals
	20.4 Applications of polymer nanocomposites on environment
	20.5 Toxicological insight of nanocomposites on human health
		20.5.1 Potential causes of cytotoxicity
		20.5.2 Factors influencing toxicity of nanocomposites
		20.5.3 Toxicity assessment of nanocomposites: an overview
	20.6 Toxicological insight of polymer nanocomposites on environment
	20.7 Concluding remarks and future directions
	References
Index




نظرات کاربران