دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Md Enamul Hoque, R. Kumar, Ahmed Sharif سری: Woodhead Publishing in Materials ISBN (شابک) : 0128244925, 9780128244920 ناشر: Woodhead Publishing سال نشر: 2022 تعداد صفحات: 584 [585] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced Polymer Nanocomposites: Science, Technology and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوکامپوزیت های پلیمری پیشرفته: علم، فناوری و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانوکامپوزیت های پلیمری پیشرفته: فناوری و کاربردهای علمی مروری دقیق از نتایج تحقیقات جدید و نوظهور از مفاهیم اساسی مرتبط با علم، فناوری و کاربردهای پیشرفته را ارائه می دهد. بخشها محرکهای کلیدی مانند افزایش تقاضا برای قطعات سبک وزن و با استحکام بالا، نیاز به مواد بستهبندی پایدار و حفظ طعم در صنایع غذایی، نوشیدنیها و نوشیدنیها و ابتکارات دفاعی مانند حفاظت بالستیک، تاخیر در آتش و محافظ الکترومغناطیسی را پوشش میدهند. با مشارکت نویسندگان بین المللی که در لبه های تحقیقاتی کار می کنند، این کتاب یک منبع مرجع ضروری برای دانشمندان مواد، شیمیدانان، تولید کنندگان و مهندسان پلیمر خواهد بود.
از طریق پیشرفت های اخیر. در فناوری نانو، محققان اکنون می توانند اتم ها را برای ایجاد مواد و محصولاتی دستکاری کنند که شیوه زندگی ما را تغییر می دهد. این مواد دارای خواص افزایش یافته ای مانند استحکام کششی، مقاومت در برابر ضربه و خراش، هدایت الکتریکی و حرارتی، پایداری حرارتی و مقاومت در برابر آتش هستند.
Advanced Polymer Nanocomposites: Science Technology and Applications presents a detailed review of new and emerging research outcomes from fundamental concepts that are relevant to science, technology and advanced applications. Sections cover key drivers such as the rising demand for lightweight and high strength automotive parts, the need for sustainable packaging materials and conservation of flavor in the food, drinks and beverages industries, and defense initiatives such as ballistic protection, fire retardation and electromagnetic shielding. With contributions from international authors working at the cutting-edge of research, this book will be an essential reference resource for materials scientists, chemists, manufacturers and polymer engineers.
Through recent advances in nanotechnology, researchers can now manipulate atoms to create materials and products that are changing the way we live our lives. These materials have enhanced properties, such as tensile strength, impact and scratch resistance, electrical and thermal conductivity, thermal stability and fire resistance.
Advanced Polymer Nanocomposites Copyright Contents List of contributors Preface 1 Fundamentals of polymer nanocomposites 1.1 Introduction 1.1.1 Polymers 1.1.2 Polymer matrix composites 1.1.3 Types of fiber reinforcements for polymer matrix composite 1.1.4 Properties of materials: a comparison 1.1.5 Polymer nanocomposites 1.1.6 Advantages of adding nanofillers to a polymer matrix 1.1.7 Problems associated with the addition of nanofillers 1.2 Materials 1.2.1 Matrix of polymer nanocomposites 1.2.2 Nanofillers for polymer matrix 1.2.3 Exceptional properties of nanofillers 1.3 Fabrication of polymer nanocomposites 1.4 Characterization of polymer nanocomposites 1.5 Degradation of polymer nanocomposites 1.6 Applications of polymer nanocomposites 1.7 Conclusion 1.8 Scope for future work Acknowledgments References 2 Rheology and crystallization of polymer nanocomposites 2.1 Introduction 2.2 Classification of nanofillers in polymer nanocomposites 2.3 Use of nanofillers in nanocomposite materials 2.4 Crystallization properties of polymer nanocomposites 2.5 Rheology of polymer nanocomposites 2.6 Conclusion References 3 Biological aspects of polymer nanocomposites 3.1 Introduction 3.2 Nanocomposites 3.3 Biological aspects of nanocomposites 3.3.1 Antibacterial aspects 3.3.2 Drug delivery aspects 3.3.3 Gene therapy aspects 3.3.4 Tissue engineering aspects 3.3.5 Biosensing aspects 3.3.6 Bioimaging aspects 3.3.7 Dental aspects 3.4 Conclusion References 4 Electrical properties of polymer nanocomposites 4.1 Introduction 4.2 Materials and method 4.2.1 Materials 4.2.2 Preparation of sugarcane nanocellulose fiber 4.2.3 Fabrication of Al-SiC nanoparticles 4.2.4 Production of sugarcane nanocellulose/Al-SiC epoxy hybrid composites 4.3 Epoxy polymer nanocomposite characterization 4.3.1 Electrical properties 4.3.2 Dielectric properties 4.4 Results and discussion 4.4.1 Space charge distribution 4.4.2 Direct current conductance analysis 4.4.3 Direct current breakdown 4.4.4 Dielectric properties 4.5 Conclusion and future perspective References 5 Optical properties of polymer nanocomposites 5.1 Introduction 5.2 Production method 5.3 Characterization techniques 5.4 Optical properties of polymer nanocomposites 5.5 Conclusion References 6 Thermal properties of polymer nanocomposites 6.1 Introduction 6.2 Thermal properties of polymers and polymer nanocomposites—terms, definitions, significance 6.2.1 Definitions and significance 6.2.1.1 Melting point and glass transition temperature 6.2.1.2 Thermal conductivity 6.2.1.3 Specific heat 6.2.1.4 Thermal diffusivity 6.2.1.5 Coefficient of linear thermal expansion 6.2.1.6 Thermal stability 6.3 Principal and techniques of thermal analysis 6.3.1 Introduction 6.3.2 Differential scanning calorimetry/calorimeter 6.3.3 Heat-flux differential scanning calorimetry 6.3.4 Power compensation differential scanning calorimetry 6.3.5 Thermogravimetric analysis 6.3.6 Thermomechanical analysis 6.3.7 Dynamic mechanical analysis 6.3.8 Thermoptometry 6.3.9 Evolved gas detection and evolved gas analysis 6.4 Polymeric nanocomposites and their mathematical models for reckoning the thermal conductivity 6.4.1 Series, parallel, and geometric model 6.4.2 Models on geometrical particle size 6.4.3 Model based on the alignment of filler 6.4.4 Effective medium theory 6.5 Thermal properties of various polymeric materials and their Nanocomposites 6.5.1 Thermal properties of thermoplastic polymer nanocomposites 6.5.2 Thermal properties of epoxy and fiber-reinforced nanocomposite 6.5.3 Recycled polymer nanocomposites 6.5.4 Thermal properties of polymer blend nanocomposite 6.5.5 Thermal properties of shape memory polymer nanocomposite 6.5.6 Thermal properties of biopolymer nanocomposite 6.6 Summary References 7 Life-cycle assessment of polymer nanocomposites 7.1 Introduction 7.2 Life-cycle assessment for nanotechnology 7.2.1 Goal definition and scope 7.2.2 Inventory analysis 7.2.3 Impact assessment 7.2.4 Interpretation 7.3 Expected benefits of LCA for PNCs 7.4 Limitation and challenges on nanocomposites LCA 7.5 LCA of food packaging materials 7.6 LCA of polymer nanocomposites for automobiles 7.7 LCA of PNCs intended for different applications 7.7.1 Graphite nanoplatelets-filled epoxy-based composite 7.7.2 Polyacrylic acid and polyethylenimine-coated magnetic nanoparticles 7.7.3 Silver-graphene oxide-reinforced polyvinylidene fluoride 7.7.4 PNC in agricultural films 7.8 Narrowing the limitations of LCA for PNC 7.9 More research works to carry on 7.10 Conclusion References 8 Polymer nanocomposites for biomedical applications 8.1 Introduction 8.2 Polymer nanocomposites and their preparation 8.3 Antimicrobial activities of polymer nanocomposites 8.4 Biocompatibility and biodegradation of polymer nanocomposites 8.5 Polymer nanocomposites for biomedical applications 8.5.1 Polymer nanocomposites in bioprinting 8.5.2 Polymer nanocomposites in tissue engineering 8.5.3 Polymer nanocomposites for drug delivery 8.5.4 Polymer nanocomposites in biosensing applications 8.6 Conclusion and future aspects References 9 Polymer nanocomposites for microelectronic devices and biosensors 9.1 Introduction 9.2 Optical devices 9.2.1 Organic light-emitting diodes 9.2.1.1 Improvement of efficiency 9.2.1.2 Improvement of color emission 9.2.2 Organic photovoltaic cells 9.3 Supercapacitors 9.3.1 Graphene and polyaniline composites 9.3.2 Graphene and polypyrrole composites 9.3.3 Graphene and poly(3,4-ethylenedioxythiophene) composites 9.4 Strain sensor 9.4.1 Silver nanoparticle–based strain sensor 9.4.2 Silver nanowire–based strain sensor 9.4.3 Silver nanoflower fiber–based strain sensor 9.4.4 Graphene-based strain sensor 9.4.5 Gold nanowire–based strain sensor 9.5 Electrochemical sensor 9.5.1 Conducting polymers/carbon nanoparticle–based sensors 9.5.2 Conducting polymers/graphene-based sensors 9.5.3 Conducting polymers/metal nanoparticle–based sensors 9.5.3.1 Silver nanoparticles 9.5.3.2 Palladium nanoparticles 9.5.3.3 Platinum nanoparticles 9.5.3.4 Gold nanoparticles 9.5.4 Conducting polymers/metal oxide nanoparticle–based sensors 9.6 Gas sensor 9.6.1 Metal oxide–conducting polymer-based gas sensors 9.6.2 Metal-conducting polymer-based gas sensors 9.6.3 Carbon nanotube–conducting polymer-based gas sensors 9.6.4 Graphene-conducting polymer-based gas sensors 9.7 Temperature sensor 9.7.1 Gas-filled cellular structures 9.7.2 Cellulose–PPy nanocomposite 9.7.3 Carbon nanotubes 9.7.4 Nanowires 9.7.5 Graphite-mixed nanocomposites 9.8 Conclusions References 10 Polymer nanocomposites for adhesives and coatings 10.1 Introduction 10.2 Polymer nanocomposite coatings 10.2.1 Fillers of polymer nanocomposite coatings 10.2.1.1 Inorganic fillers and clay-based polymer nanocomposite coatings 10.2.2 Carbon-based polymer nanocomposite coatings 10.2.3 Preparation methods of polymer nanocomposite coatings 10.2.4 Conductive polymer nanocomposite coatings 10.2.5 Smart polymer nanocomposite coatings 10.2.6 UV-cured polymer nanocomposite coatings 10.2.7 Biocompatible and antimicrobial polymer nanocomposite coatings 10.3 Polymer nanocomposite adhesives 10.3.1 Epoxy-based high-performance nanocomposite adhesives 10.3.2 Waterborne polyurethane nanocomposite adhesives 10.3.3 Pressure-sensitive adhesives 10.3.4 Hydrogel and biomimetic adhesives 10.3.5 Conductive polymer nanocomposite adhesives 10.4 Application of polymer nanocomposite coatings and adhesives 10.5 Conclusion and future prospects References 11 Polymer nanocomposites for automotive applications 11.1 Introduction 11.2 Composite and nanocomposite 11.3 Nano-advantage 11.4 Polymer nanocomposite 11.5 Advantageous properties of PNC 11.5.1 Mechanical strength and toughness 11.5.2 Thermal stability 11.5.3 Chemical and barrier resistance 11.5.4 Electrical activity 11.5.5 Catalytic activity 11.5.6 Optical activity 11.5.7 Smart response 11.5.8 Biological activity 11.6 Limitations of PNCs 11.7 Factors influencing the properties of polymer nanocomposites 11.8 Types of nanoreinforcements 11.9 Most commonly used polymer matrices and nanoparticles 11.9.1 Polymer matrices [26] 11.9.2 Nanoparticles [26] 11.9.2.1 Polyhedral oligomeric silsesquioxane 11.10 Applications of PNC in automotive sector 11.10.1 Coatings 11.10.1.1 Clear coatings 11.10.1.2 Weather-resistant coatings 11.10.1.3 Self-healing nanocomposites for automotive coatings 11.10.2 Tire 11.10.2.1 SBR/clay nanocomposite 11.10.2.2 Epoxidized natural rubber/organoclay nanocomposite 11.10.2.3 Butyl/clay nanocomposite 11.10.2.4 Nanorubber 11.10.3 Fuel cell and fuel tank 11.10.4 Battery and battery packaging 11.10.5 Mirror 11.10.6 Glasses 11.10.7 Lightweight purpose 11.10.8 Gears 11.10.9 Rear floor 11.10.10 Seatbacks 11.10.11 Timing belt cover 11.10.12 Engine cover 11.10.13 Miscellaneous 11.10.14 Green nanocomposite 11.10.14.1 Green composites in automotive sector 11.10.14.2 Green nanofillers 11.10.14.3 Green polymeric nanocomposites 11.10.15 Recent research reports 11.11 Challenges 11.12 Potential steps for quick commercialization 11.13 Conclusions Acknowledgments References 12 Polymer nanocomposites for road construction: investigating the aging performance of polymer and carbon nanotube–modifie... 12.1 Introduction 12.2 Background of current study 12.3 CFM test protocol 12.3.1 CFM tip functionalization 12.3.1.1 Calibration of CFM tips 12.3.1.2 Description of CNT 12.4 Results and discussion 12.4.1 Comparative study between SB and SBS 12.4.1.1 Statistical analysis of CFM data for 4% SB and SBS (fresh and aged samples) with 0.5% CNT 12.5 Conclusions 12.6 Recommendation for future study Acknowledgment References 13 Polymer nanocomposites for energy 13.1 Introduction 13.2 Polymer nanocomposites as energy materials: terminology and annotations 13.2.1 Dielectric constant/relative permittivity 13.2.2 Dielectric loss 13.2.3 Dielectric nonlinearity 13.2.4 Breakdown strength 13.2.5 Theory of percolation 13.3 Novel PNC energy materials: basic concepts 13.3.1 Selection of matrix phase of PNCs for energy application 13.3.2 Selection of nanofillers of PNCs for energy applications 13.4 Effect of interface on the dielectric properties of PNCs 13.4.1 Tanaka’s theoretical model 13.4.2 Lewis’s theoretical model 13.5 Ferroelectric fluoropolymer-based PNCs as energy materials 13.6 Graphene/graphene-based PNCs as energy materials 13.6.1 Graphene–PANI nanocomposites 13.6.2 Graphene–PPy nanocomposites 13.7 Conclusion and prospects References 14 Polymer nanocomposites for defense applications 14.1 Introduction 14.2 Defense applications of polymer nanocomposites 14.2.1 Smart military uniforms 14.2.2 Impact and shock resistance/ballistic protection 14.2.2.1 Lightweight military platforms and armors 14.2.3 Optically transparent armor 14.2.4 Acoustics absorption 14.2.5 Signature reduction 14.2.6 Thermal ablation/fire retardation 14.2.7 Corrosion protection 14.2.8 Explosives and propellants 14.2.9 Wound care for soldiers 14.2.10 Electromagnetic interference shielding 14.2.11 Ultraviolet irradiation resistance 14.2.12 Refractive index tuning 14.2.13 Sensory applications 14.2.13.1 Hazardous chemical detection 14.2.13.2 Detection of explosives 14.2.13.3 Other sensors 14.3 Actuators for military robots 14.4 Marine applications 14.5 Military ration packaging (diffusion barrier) 14.6 Water purification for defense 14.6.1 Removal of heavy metallic ions 14.6.2 Removal of dyes 14.6.3 Desalination and removal of oil 14.6.4 Removal of other pollutants 14.6.5 Self-water purification system 14.7 Conclusion References Further reading 15 Polymer nanocomposites for packaging 15.1 Introduction 15.2 Issues with traditional packaging system 15.3 Advantages of polymer nanocomposites in packaging 15.3.1 Barrier properties 15.3.2 Mechanical properties 15.3.3 Thermal properties 15.3.4 Flame retardancy 15.3.5 Optical properties 15.3.6 Degradation properties 15.3.7 Antimicrobial and antibacterial properties 15.4 Polymer nanocomposites for packaging foods and beverages 15.5 Polymer nanocomposites for packaging electronic components 15.6 Toxicity of polymer nanocomposites 15.7 Conclusions and future prospects References 16 Carbon-based polymer nanocomposites for electronic textiles (e-textiles) 16.1 Introduction 16.2 Functions of e-textiles 16.3 Carbon-based materials for e-textiles 16.3.1 Carbon derivatives 16.3.1.1 Activated carbon 16.3.1.2 Graphene 16.3.1.3 Graphene oxide 16.3.1.4 Carbon nanotube 16.3.1.5 Carbon black 16.3.1.6 Carbon fiber 16.4 Fabrication techniques 16.4.1 Fiber-based fabrication 16.4.2 Yarn-based fabrication 16.4.3 Fabric and garment-based fabrication 16.5 Characterization techniques 16.5.1 E-textile standardization 16.6 Applications 16.6.1 Fiber-based applications 16.6.2 Yarn-based applications 16.6.3 Fabric-based applications 16.6.4 Recent modifications in e-textiles 16.7 Health aspects of e-textiles 16.8 Environmental aspects of e-textiles 16.9 Recycle, reuse, and sustainability 16.10 Conclusion and future stream References 17 Flame retardant nanofillers and its behavior in polymer nanocomposite 17.1 Introduction 17.2 Flame retardant nanomaterials 17.2.1 Clay-based nanomaterials 17.2.2 Metal-based nanomaterials 17.2.3 Carbon-based nanomaterials 17.2.4 Silicone-based nanomaterials 17.2.5 Biobased nanomaterials 17.2.6 Nitrogen-based nanoparticle 17.3 Flame retardant polymer nanocomposite 17.4 Flammability of polymer nanocomposite 17.5 Heat release rate of flame retardant polymer nanocomposite 17.6 Limiting oxygen index of flame retardant polymer nanocomposite materials 17.7 Smoke toxicity analysis 17.8 Applications of flame retardant polymer nanocomposite materials 17.8.1 Aerospace 17.8.2 Automotive 17.8.3 Textile 17.8.4 Building 17.9 Future trend on flame retardant nanocomposite 17.10 Summary and future directions Acknowledgments References 18 Innovativeness and sustainability of polymer nanocomposites 18.1 Introduction 18.2 Chitosan 18.2.1 Chitosan polymer nanocomposites 18.2.2 Polymer/chitosan/graphene nanocomposites 18.2.3 Polymer/chitosan/nanoclay nanocomposites 18.2.4 Polymer/chitosan/metal nanocomposites 18.3 Cellulose 18.3.1 Nanocellulose polymer nanocomposites 18.3.2 Polymer/cellulose/graphene nanocomposites 18.3.3 Polymer/cellulose/nanoclay nanocomposites 18.3.4 Polymer/cellulose/metal nanocomposites 18.4 Collagen 18.4.1 Collagen polymer nanocomposites 18.4.2 Polymer/collagen/silica nanocomposites 18.4.3 Polymer/collagen/hydroxyapatite nanocomposites 18.4.4 Polymer/collagen/metal nanocomposites 18.5 Keratin 18.5.1 Polymer/keratin/graphene nanocomposites 18.6 Conclusions and future directions References 19 Industrial implementation of polymer-nanocomposites 19.1 Introduction 19.2 Applications and challenges of PNC industry 19.2.1 Innovation challenge 19.2.2 Processing challenge 19.2.3 Scaling up challenge 19.3 Business ecosystem 19.3.1 Manufacturer 19.3.2 Research and development 19.3.3 Investor 19.3.4 IP and consultancy 19.3.5 Infrastructure 19.3.6 Regulation 19.3.7 Standardization 19.4 PESTLE analysis 19.4.1 Political variable 19.4.2 Economic variable 19.4.3 Social variable 19.4.4 Technological variable 19.4.5 Legal variable 19.4.6 Environmental variable 19.5 Conclusion References 20 Environmental and health impacts of polymer nanocomposites 20.1 Introduction 20.2 Polymer nanocomposites: an overview 20.2.1 Definition and composition of polymer nanocomposites 20.2.2 Types of polymer nanocomposites 20.2.2.1 Nanoclay-reinforced composites 20.2.2.2 Carbon nanotube-reinforced composites 20.2.2.3 Carbon nanofiber-reinforced composites 20.2.2.4 Inorganic particle-reinforced composites 20.2.3 Features of polymer nanocomposites 20.3 Applications of polymer nanocomposites in human health 20.3.1 Polymer nanocomposites in pharmaceuticals 20.3.2 Polymer nanocomposites in diagnosis and treatment of diseases 20.3.2.1 Diagnosis and treatment of tumor and cancer 20.3.2.2 Management of angioplasty 20.3.2.3 Tissue engineering 20.3.2.4 Wound healing 20.3.2.5 Polymer nanocomposites in orthopedics 20.3.2.6 Polymer nanocomposites in dentistry 20.3.2.7 Polymer nanocomposites in eye problems 20.3.3 Polymer nanocomposites in agriculture and nutraceuticals 20.4 Applications of polymer nanocomposites on environment 20.5 Toxicological insight of nanocomposites on human health 20.5.1 Potential causes of cytotoxicity 20.5.2 Factors influencing toxicity of nanocomposites 20.5.3 Toxicity assessment of nanocomposites: an overview 20.6 Toxicological insight of polymer nanocomposites on environment 20.7 Concluding remarks and future directions References Index