ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Organic Waste Management: Sustainable Practices and Approaches

دانلود کتاب مدیریت پسماند آلی پیشرفته: شیوه ها و رویکردهای پایدار

Advanced Organic Waste Management: Sustainable Practices and Approaches

مشخصات کتاب

Advanced Organic Waste Management: Sustainable Practices and Approaches

دسته بندی: فن آوری
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0323857922, 9780323857925 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 528 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 مگابایت 

قیمت کتاب (تومان) : 45,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Advanced Organic Waste Management: Sustainable Practices and Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدیریت پسماند آلی پیشرفته: شیوه ها و رویکردهای پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مدیریت پسماند آلی پیشرفته: شیوه ها و رویکردهای پایدار

مدیریت پسماند آلی پیشرفته: روش‌ها و رویکردهای پایدار یک رویکرد جامع یکپارچه برای چالش‌های مرتبط با مدیریت زباله‌های آلی، به ویژه مرتبط با پایداری، ارزیابی چرخه عمر، مقررات در حال ظهور، و رویکردهای جدید برای بازیابی منابع و انرژی ارائه می‌کند. علاوه بر تکنیک‌های سنتی، مانند هضم بی‌هوازی، کمپوست‌سازی، تکنیک‌های نوآورانه و نوظهور بازیافت زباله‌ها مانند کربن‌سازی هیدروترمال و ورمی کمپوست گنجانده شده است. این کتاب اصول و شیوه های مدیریت زباله های آلی پایدار را با مطالعات موردی موفق از کشورهای توسعه یافته و در حال توسعه ترکیب می کند و کاربردها و چالش های عملی را برجسته می کند. بخش‌ها شامل تولید جهانی زباله‌های آلی، شامل منابع و انواع، ترکیب و ویژگی‌ها، تمرکز بر جنبه‌های فنی مرتبط با تکنیک‌های مختلف بازیابی منابع مانند کمپوست و ورمی‌کمپوست، پوشش انواع فناوری‌های تبدیل زباله به انرژی، نشان دادن ابزارهای مدیریت زیست محیطی مختلف برای زباله‌های آلی، ارائه شیوه‌ها و استراتژی‌های نوآورانه مدیریت پسماند آلی که با مطالعات موردی دقیق تکمیل می‌شوند، رویکرد اقتصاد زیستی دایره‌ای و موارد دیگر را معرفی می‌کنند. اصول و شیوه های مدیریت پسماندهای ارگانیک و پایدار را با قوانین نوظهور و تجزیه و تحلیل به روز در مورد ابزارهای مدیریت زیست محیطی مانند ارزیابی چرخه حیات به صورت جامع ارائه می دهد. زباله و اقتصاد زیستی دایره‌ای شامل آخرین یافته‌های تحقیقاتی و دیدگاه‌های آتی تکنیک‌های نوآورانه و نوظهور بازیافت زباله، مانند کربن‌سازی هیدروترمال و ورمی کمپوست است.


توضیحاتی درمورد کتاب به خارجی

Advanced Organic Waste Management: Sustainable Practices and Approaches provides an integrated holistic approach to the challenges associated with organic waste management, particularly related to sustainability, lifecycle assessment, emerging regulations, and novel approaches for resource and energy recovery. In addition to traditional techniques, such as anaerobic digestion, composting, innovative and emerging techniques of waste recycling like hydrothermal carbonization and vermicomposting are included. The book combines the fundamentals and practices of sustainable organic waste management with successful case studies from developed and developing countries, highlighting practical applications and challenges. Sections cover global organic waste generation, encompassing sources and types, composition and characteristics, focus on technical aspects related to various resource recovery techniques like composting and vermicomposting, cover various waste-to-energy technologies, illustrate various environmental management tools for organic waste, present innovative organic waste management practices and strategies complemented by detailed case studies, introduce the circular bioeconomy approach, and more. Presents the fundamentals and practices of sustainable, organic waste management, with emerging regulations and up-to-date analysis on environmental management tools such as lifecycle assessment in a comprehensive manner Offers the latest information on novel concepts and strategies for organic waste management, particularly zero waste and the circular bioeconomy Includes the latest research findings and future perspectives of innovative and emerging techniques of waste recycling, such as hydrothermal carbonization and vermicomposting



فهرست مطالب

Advanced Organic Waste Management
Advanced Organic Waste Management: Sustainable Practices and Approaches
Copyright
Contents
Contributors
1 Organic waste: generation, composition, and health hazards
1 Organic waste: generation, composition and valorisation
	1.1 Introduction
	1.2 Sources, composition and characterization of the solid waste
		1.2.1 Source-based classification
		1.2.2 Type-based classification
		1.2.3 Generation, composition and characterization of the solid waste
	1.3 Wastes as a wealth and source of income
	1.4 Valorization of organic solid waste
	1.5 Conclusions
	References
2 Open dumping of organic waste: Associated fire, environmental pollution and health hazards
	2.1 Introduction
		2.1.1 Problems associated with the organic waste
		2.1.2 Existing status of organic waste management
	2.2 Fires at MSW landfills
		2.2.1 Health hazards of landfill fires
		2.2.2 Landfill fires impact on surrounding environment
	2.3 Existing status of municipal solid waste management system
		2.3.1 GHGs emissions
		2.3.2 Organic waste degradation and its contribution to the greenhouse effect
	2.4 Challenges and opportunities for organic waste treatment
		2.4.1 Composting of organic waste
		2.4.2 Biomethanation
		2.4.3 Organic waste diversion
	2.5 Approach required for sustainable organic waste management
	2.6 Conclusion
	References
2 Resource recovery from organic waste
3 Composting and vermicomposting: Process optimization for the management of organic waste
	3.1 Introduction
	3.2 Compositing
		3.2.1 Substrates suitable for compost
	3.3 Types of composting and time optimization
		3.3.1 Rotary drum composting
		3.3.2 Vermicomposting
	3.4 Conclusion
	Acknowledgments
	References
3 Energy recovery from organic waste
4 Composting techniques: utilization of organic wastes in urban areas of Indian cities
	4.1 Introduction
	4.2 Municipal solid waste management in Indian scenario
	4.3 Composting practices in urban areas
	4.4 Factors effecting urban composting
	4.5 Recovery of resources from urban waste through composting process
	4.6 Conclusion
	References
4 Environmental management tools for organic waste
5 Challenges and opportunities for disposal of floral waste in developing countries by using composting method
	5.1 Introduction
	5.2 Sources of flower waste
	5.3 Types of flower used for worship
		5.3.1 Jasmine
		5.3.2 Lotus
		5.3.3 Hibiscus
		5.3.4 Rose
	5.4 Significance of flower waste management
	5.5 Flower waste management using different technique in current scenario
	5.6 Utilization of various composting process using the different composting
		5.6.1 Methods of composting
	5.7 Case studies of composting of flower waste at SVNIT, Surat, India
	5.8 Conclusions
	References
5 Innovative practices for circular bioeconomy in organic waste management
6 Transition towards sustainability
6 Valorization of industrial solid waste through novel biological treatment methods ^^e2^^80^^93 integrating different composting techniques
	6.1 Introduction
	6.2 Composting methodologies
		6.2.1 Rotary drum composting
		6.2.2 Vermicomposting
	6.3 Implications of previous studies
		6.3.1 Composting of paper mill sludge
		6.3.2 Vermicomposting of PPMS
		6.3.3 The new approach ^^e2^^80^^93 integrating different composting techniques
	6.4 Evaluation of integrated rotary drum and vermicomposting process
		6.4.1 Compost quality
	6.5 Conclusions
	References
7 Vermicomposting of organic wastes by earthworms: Making wealth from waste by converting ‘garbage into gold’ for farmers
	7.1 Introduction: mounting organic wastes - Growing economic and environmental burden on nations
	7.2 Organic wastes that can be vermicomposted on large scale by earthworms
	7.3 Species of waste-eater earthworms which can efficiently biodegrade
	7.4 Mechanism of worm action in vermicomposting of organic wastes
	7.5 Some key considerations in vermicomposting of organic wastes by earthworms
	7.6 Some conditions essential for efficient action of earthworms to degrade the organic wastes
	7.7 Vermicomposting of organic wastes on commercial scale
		7.7.1 Some systems for vermicomposting of organic wastes on commercial scales
		7.7.2 Windrows vermicomposting system
		7.7.3 Wedge vermicomposting system
		7.7.4 Bed vermicomposting system
		7.7.5 Box vermicomposting systems
	7.8 Nations in world promoting vermicomposting technology
	7.9 Social, economic \& environmental benefits of vermicomposting organic waste
		7.9.1 The social benefits
		7.9.2 The economic benefits
		7.9.3 The environmental benefits
	7.10 Some problems encountered during vermi-composting of organic wastes and their solutions
	7.11 Conclusions
	References
8 Current problems of vermistabilization as a sustainable strategy for recycling of excess sludge
	8.1 Introduction
	8.2 Vermistabilization for sludge
		8.2.1 Vermi-wetland of excess sludge
		8.2.2 Vermicomposting of dewatered sludge
	8.3 Operation problems of vermistabilization
		8.3.1 Vermi-wetland problems
		8.3.2 Vermicomposting problems
	8.4 Problems of environmental risks in sludge vermicompost
	8.5 Conclusions
	Acknowledgements
	References
9 Recent advances in composting and vermicomposting techniques in the cold region: resource recovery, challenges, and way forward
	9.1 Introduction
	9.2 Recent composting methods adopted in the cold region
		9.2.1 In-vessel composting
		9.2.2 Psychrophilic microbes
		9.2.3 Psychrophilic earthworms
	9.3 Composting operations
		9.3.1 Substrate pretreatments
		9.3.2 Insulation
		9.3.3 Additives
		9.3.4 Carrier materials
		9.3.5 Compost curing
	9.4 Marketing potential
	9.6 Conclusion
	9.7 Future aspects
	Acknowledgment
	Author statement
	References
10 Resource recovery and value addition of terrestrial weeds through vermicomposting
	10.1 Introduction
	10.2 Vermicomposting of selected weeds
		10.2.1 Study material
		10.2.2 Experimental design
		10.2.3 Sampling and analysis
		10.2.4 Statistical analysis
		10.2.5 Results and discussion
	10.3 Conclusion
	References
11 Composting and vermicomposting of obnoxious weeds - A novel approach for the degradation of allelochemicals
	11.1 Introduction
		11.1.1 Invasion process
		11.1.2 Allelopathic interaction of weeds in ecosystem
	11.2 Indian terrestrial weeds and their ecological effects
		11.2.1 Parthenium hysterophorus
		11.2.2 Chromolaena odorata
		11.2.3 Lantana camara
	11.3 Composting and vermicomposting- best practice to manage terrestrial weeds
		11.3.1 Composting technology
		11.3.2 Vermicomposting
	11.4 Conclusion
	References
12 Vermicomposting and bioconversion approaches towards the sustainable utilization of palm oil mill waste
	12.1 Introduction
	12.2 Vermicomposting of palm oil mill waste
	12.3 Palm oil mill waste vermicompost as a soil amendment
	12.4 Bioenergy potential of palm oil mill waste
	12.5 Conclusion and future work
	References
13 Composition, characteristics and challenges of OFMSW for biogas production: Influence of mechanism and operating parameters to improve digestion process
	13.1 Introduction
	13.2 Compositional characteristics of OFMSW
	13.3 Challenges in the optimization of waste through AD
		13.3.1 Role of inhibitors in anaerobic digestion
	13.4 Operating parameter/ factors affecting the AD
		13.4.1 pH
		13.4.2 Temperature
		13.4.3 Retention time
		13.4.4 Organic loading rate \(ORL\)
		13.4.5 Substrates
		13.4.6 Carbon/Nitrogen ratio \(C:N\) Ratio
	13.5 Technologies used for improved biogas production
		13.5.1 Physical pretreatment
		13.5.2 Chemical pretreatment
		13.5.3 Physicochemical pretreatment
		13.5.4 Biological pre-treatment
	13.6 Conclusion
	References
14 Factors affecting anaerobic digestion for biogas production: a review
	14.1 Introduction
	14.2 Anaerobic digestion
		14.2.1 Biochemical methane potential test
		14.2.2 Anaerobic reactors
	14.3 Factors affecting anaerobic digestion
		14.3.1 Temperature
		14.3.2 pH
		14.3.3 C/N ratio
		14.3.4 Organic loading rate \(OLR\)
		14.3.5 Toxicity
		14.3.6 Trace elements
	14.4 Conclusion
	References
15 Recent advancements in anaerobic digestion: A Novel approche for waste to energy
	15.1 Introduction
	15.2 Anaerobic digestion
	15.3 Factors affecting anaerobic digestion
	15.4 Limitations
	15.5 Methods to enhance ad process
		15.5.1 Pretreatment
		15.5.2 Co-Digeston
	15.6 Conclusion
	References
16 Solid state anaerobic digestion of organic waste for the generation of biogas and bio manure
	16.1 Introduction
	16.2 Anaerobic digestion \(AD\)
		16.2.1 Hydrolysis
		16.2.2 Acidogenesis
		16.2.3 Acetogenesis
		16.2.4 Methanogenesis
	16.3 Critical factors influencing the AD process
	16.4 Influence of substrate type on AD process
		16.4.1 Low solids v/s high solids feedstock
	16.5 Classification of anaerobic digestion process based on solids concentration
		16.5.1 Wet anaerobic digestion process \(WAD\)
		16.5.2 Solid state anaerobic digestion process \(SSAD\)
	16.6 Operational strategies to overcome the SSAD limitations
		16.6.1 Impeller mixing and rheology
		16.6.2 Recirculation of slurry
		16.6.3 Gas purging
	16.7 Technologies available on solid state anaerobic digestion
		16.7.1 Batch solid state anaerobic digestion systems
		16.7.2 Technologies available on batch solid state anaerobic systems
		16.7.3 Continuous solid state anaerobic digestion systems
		16.7.4 Technologies available for continuous solids state anaerobic digestion
	16.8 Enhanced hydrolysis of high solid substrates
		16.8.1 Pre-treatment of substrate
		16.8.2 Co-digestion of substrate
	16.9 Conclusions and scope for future research
	Acknowledgment
	References
17 Use of petroleum refinery sludge for the production of biogas as an alternative energy source: a review
	17.1 Introduction
	17.2 Growing demand of oil and need for alternative energy sources
		17.2.1 Generation of petroleum refinery sludge
		17.2.2 Classification of petroleum refinery sludge
		17.2.3 Formation of petroleum refinery sludge
		17.2.4 Petroleum refinery sludge treatment and oil recovery methods
		17.2.5 Petroleum sludge disposal methods
		17.2.6 Anaerobic digestion
		17.2.7 Pretreatment techniques
		17.2.8 Biogas reactors
	17.3 Conclusion
	References
18 A review on hydrothermal pretreatment of sewage sludge: Energy recovery options and major challenges
	18.1 Introduction
	18.2 Thermal hydrolysis \(TH\)
		18.2.1 Mechanism of thermal hydrolysis
		18.2.2 Research studies on TH process
	18.3 Wet oxidation \(WO\)
		18.3.1 Mechanism of WO
		18.3.2 Research studies on WO process
	18.4 Hydrothermal carbonisation \(HTC\)
		18.4.1 Mechanism of HTC
		18.4.2 Research studies on HTC process
	18.5 Commercial systems in market
		18.5.1 TH
		18.5.2 WO
		18.5.3 HTC
	18.6 Gaps and scope for future research
	18.7 Conclusions
	Acknowledgements
	References
	Web References
19 Bioreactor landfills: sustainable solution for disposal of municipal solid waste
	19.1 Introduction
	19.2 Dry tomb Vs bioreactor landfill
	19.3 Key design criteria for bioreactor landfill
		19.3.1 Cell design
		19.3.2 Liner and cover system
		19.3.3 MSW digestate density consideration
		19.3.4 Leachate recirculation and management
	19.4 Utilization of LFG for electricity generation
	19.5 Sustainability of bioreactor landfill
		19.5.1 Advantageous co-disposal of wastes in landfill bioreactor
		19.5.2 Leachate strength reduction and treatment
		19.5.3 Settlement and postclosure monitoring
	19.6 Conclusion
	References
20 An approach for integrating sustainable development goals \(SDGs\) through organic waste management
	20.1 Introduction
	20.2 Organic waste generation
		20.2.1 Existing scenarios of organic waste management
	20.3 Challenges and opportunities associated with the organic waste management
		20.3.1 Lack of skill and information
		20.3.2 Lack of funds and infrastructure
		20.3.3 Political conflicts
		20.3.4 Poor or negligible implantation of rules
		20.3.5 Lack of technical and coordination
		20.3.6 Lack of awareness
		20.3.7 Unavailability of advanced technologies and equipment’s
	20.4 Potential benefits articulated towards health and safety environment
		20.4.1 Extended employment opportunities
		20.4.2 Clean water and sanitation
		20.4.3 Good health and well-being
		20.4.4 Decent work and economic growth
		20.4.5 Industry, innovation and infrastructure
		20.4.6 Sustainable cities and communities
		20.4.7 Responsible consumption and production
		20.4.8 Affordable and clean energy
		20.4.9 Climate action
	20.5 Integrating sustainability with organic waste management for sustainable livelihood
		20.5.1 Sanitation worker at your door step
		20.5.2 Smart city innovation
		20.5.3 Formalizing informal recyclers and rag pickers
		20.5.4 Youth engagement and community awareness
	20.6 Conclusion
	Declaration of competing interest
	Acknowledgement
	References
21 Application of remote sensing and GIS in integrated solid waste management - a short review
	21.1 Introduction
	21.2 Role of GIS and RS in ISWM
	21.3 Application of GIS and RS in ISWM
		21.3.1 Estimation of waste generation and clustering
		21.3.2 Identification of preferred location of temporary or primary storage and transfer stations
		21.3.3 Optimization of waste collection route and transportation
		21.3.4 Identification of suitable sites for processing and landfill
	21.4 Conclusion
	References
22 Circular system of resource recovery and reverse logistics approach: key to zero waste and zero landfill
	22.1 Introduction
	22.2 Concept and philosophy of zero waste
	22.3 Zero landfill concept
	22.4 Implementation of zero waste program
		22.4.1 ECO design
		22.4.2 Identify resources within the waste stream and make a plan
		22.4.3 Sorting of waste
		22.4.4 Circular loops
		22.4.5 Explore and apply waste reduction
		22.4.6 Insist on producer responsibility
		22.4.7 Stimulate the market for recycled and reusable products
		22.4.8 Fund local and regional diversion and resource recovery initiatives
	22.5 Life cycle management and assessment \(LCA\)
		22.5.1 Benefits of LCA
		22.5.2 Limitations of LCA
	22.6 Reverse logistics approach
	22.7 Green engineering principles
		22.7.1 Principle 1: inherent rather than circumstantial
		22.7.2 Principle 2: prevention instead of treatment
		22.7.3 Principle 3: design for separation
		22.7.4 Principle 4: maximize mass, energy, space, and time efficiency
		22.7.5 Principle 5: output-pulled versus input-pushed
		22.7.6 Principle 6: conserve complexity
		22.7.7 Principle 7: durability rather than immortality
		22.7.8 Principle 8: meet need, minimize excess
		22.7.9 Principle 9: minimize material diversity
		22.7.10 Principle 10: integrate local material and energy flows
		22.7.11 Principle 11: design for commercial “afterlife”
		22.7.12 Principle 12: renewable rather than depleting
	22.8 Polluter pays principle
	22.9 Extended producer responsibility
	22.10 Zero waste index
	22.11 Zero waste management strategies at industrial level
	22.12 Benefits and challenges in implementation of zero waste philosophy
		22.12.1 Benefits to the community
		22.12.2 Economic and financial benefits
		22.12.3 Benefits to the environment
		22.12.4 Benefits to the industry
	22.13 Critical success factors for ‘‘Zero waste”
		22.13.1 Critical success factors ways to done
	22.14 Conclusion
	References
23 Sustainable waste management approach: A paradigm shift towards zero waste into landfills
	23.1 Introduction
	23.2 Need of the paradigm shift towards zero waste
	23.3 Strategic steps towards zero waste paradigm
		23.3.1 Avoiding and minimizing waste generation
		23.3.2 Management and treatment of waste
		23.3.3 Regular monitoring and evaluation
	23.4 Issues in zero waste strategy development
	23.5 Application and limitations of the ZW framework
	23.6 Current scenario in smart cities
	23.7 Conclusion
	References
24 Current trends and future challenges in smart waste management in smart cities
	24.1 Introduction
	24.2 Waste management
		24.2.1 Industry trends in waste management
		24.2.2 High- end Technology for waste management
		24.2.3 Waste to energy
		24.2.4 Regulations for collecting and processing waste
	24.3 Treatments and disposal
		24.3.1 Fuel produced from MSW
		24.3.2 Land filling
	24.4 What is the need?
	24.5 Waste management in smart cities
	24.6 Sustainability framework
	24.7 Future developments
	24.8 Conclusion
	References
25 Smart waste management practices in smart cities: Current trends and future perspectives
	25.1 Introduction
	25.2 Waste management practices
		25.2.1 Waste characterization
		25.2.2 Waste quantification
		25.2.3 Waste management
	25.3 Integration of technologies for waste management in smart cities
		25.3.1 Spatial technologies
		25.3.2 Identification technologies
		25.3.3 Data acquisition technologies
		25.3.4 Data communication
	25.4 Integrated framework for smart waste management practices
		25.4.1 Module 1: product lifecycle data collation framework
		25.4.2 Module 2: minimization of waste generation through innovative ideas by aware and responsible citizens
		25.4.3 Module 3: optimal infrastructure with intelligent and sensor-based technologies for effective segregation, real-time collection, and recycling of waste
	25.5 Factors affecting the integrated framework of smart waste management practices
	25.6 Uncertainties associated with smart waste management
	25.7 Future prospects
	25.8 Conclusions
	References
26 Waste management of rural slaughterhouses in developing countries
	26.1 Introduction
	26.2 Challenges in organic waste recycling
		26.2.1 Segregation of waste
		26.2.2 High moisture content
		26.2.3 Presence of infectious pathogens
		26.2.4 Removal of pollutants
	26.3 Treatment alternatives of slaughterhouse waste
		26.3.1 Incineration
		26.3.2 Rendering
		26.3.3 Composting
		26.3.4 Anaerobic digestion
		26.3.5 Alkaline hydrolysis
		26.3.6 Enzymatic management
		26.3.7 Drying treatment
	26.4 Achievement of circular bioeconomy through waste valorization
	26.5 Conclusion and recommendations
	Acknowledgements
	References
27 An emerging trend in waste management of COVID-19
	27.1 Introduction
	27.2 Transmission, symptoms, data of COVID-19 disease
	27.3 Impacts of the COVID-19 pandemic
		27.3.1 Social impacts
		27.3.2 Economic impacts
		27.3.3 Healthcare impacts
		27.3.4 Impact of COVID-19 on the waste management sector
	27.4 Types of protective systems being used
	27.5 Biomedical wastes generated during COVID-19 and their effects
	27.6 Treatments for biomedical wastes generated during COVID-19
		27.6.1 Collection
		27.6.2 Disinfection technologies employed to treat bio-medical waste \(BMW or COVID-waste\)
		27.6.3 Thermal based technologies
		27.6.4 Chemical based technologies
		27.6.5 Irradiative methods
		27.6.6 Mechanical methods
		27.6.7 Biological methods
	27.7 Future outlook and challenges
		27.7.1 General modifications- to tackle the crisis better
	27.8 Websites
	References
28 Implications of COVID-19 pandemic on waste management practices: Challenges, opportunities, and strategies towards sustainability
	28.1 Introduction
	28.2 The global overview of the solid waste during the COVID-19 pandemic
		28.2.1 Pandemic induced surge in the solid waste generation
		28.2.2 Implications of COVID-19 on food supply chain and related food waste generation
	28.3 Solid waste management and the COVID-19 pandemic
		28.3.1 Challenges of solid waste management during the COVID-19 pandemic
		28.3.2 Policies and guidelines for managing COVID-19 related solid waste
		28.3.3 Opportunities and strategies for sustainable solid waste management
	28.4 Future prospects
	28.5 Conclusions
	References
Index




نظرات کاربران