دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Chaudhery Mustansar Hussain. Subrata Hait سری: ISBN (شابک) : 0323857922, 9780323857925 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 528 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced Organic Waste Management: Sustainable Practices and Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت پسماند آلی پیشرفته: شیوه ها و رویکردهای پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدیریت پسماند آلی پیشرفته: روشها و رویکردهای پایدار یک رویکرد جامع یکپارچه برای چالشهای مرتبط با مدیریت زبالههای آلی، به ویژه مرتبط با پایداری، ارزیابی چرخه عمر، مقررات در حال ظهور، و رویکردهای جدید برای بازیابی منابع و انرژی ارائه میکند. علاوه بر تکنیکهای سنتی، مانند هضم بیهوازی، کمپوستسازی، تکنیکهای نوآورانه و نوظهور بازیافت زبالهها مانند کربنسازی هیدروترمال و ورمی کمپوست گنجانده شده است. این کتاب اصول و شیوه های مدیریت زباله های آلی پایدار را با مطالعات موردی موفق از کشورهای توسعه یافته و در حال توسعه ترکیب می کند و کاربردها و چالش های عملی را برجسته می کند. بخشها شامل تولید جهانی زبالههای آلی، شامل منابع و انواع، ترکیب و ویژگیها، تمرکز بر جنبههای فنی مرتبط با تکنیکهای مختلف بازیابی منابع مانند کمپوست و ورمیکمپوست، پوشش انواع فناوریهای تبدیل زباله به انرژی، نشان دادن ابزارهای مدیریت زیست محیطی مختلف برای زبالههای آلی، ارائه شیوهها و استراتژیهای نوآورانه مدیریت پسماند آلی که با مطالعات موردی دقیق تکمیل میشوند، رویکرد اقتصاد زیستی دایرهای و موارد دیگر را معرفی میکنند. اصول و شیوه های مدیریت پسماندهای ارگانیک و پایدار را با قوانین نوظهور و تجزیه و تحلیل به روز در مورد ابزارهای مدیریت زیست محیطی مانند ارزیابی چرخه حیات به صورت جامع ارائه می دهد. زباله و اقتصاد زیستی دایرهای شامل آخرین یافتههای تحقیقاتی و دیدگاههای آتی تکنیکهای نوآورانه و نوظهور بازیافت زباله، مانند کربنسازی هیدروترمال و ورمی کمپوست است.
Advanced Organic Waste Management: Sustainable Practices and Approaches provides an integrated holistic approach to the challenges associated with organic waste management, particularly related to sustainability, lifecycle assessment, emerging regulations, and novel approaches for resource and energy recovery. In addition to traditional techniques, such as anaerobic digestion, composting, innovative and emerging techniques of waste recycling like hydrothermal carbonization and vermicomposting are included. The book combines the fundamentals and practices of sustainable organic waste management with successful case studies from developed and developing countries, highlighting practical applications and challenges. Sections cover global organic waste generation, encompassing sources and types, composition and characteristics, focus on technical aspects related to various resource recovery techniques like composting and vermicomposting, cover various waste-to-energy technologies, illustrate various environmental management tools for organic waste, present innovative organic waste management practices and strategies complemented by detailed case studies, introduce the circular bioeconomy approach, and more. Presents the fundamentals and practices of sustainable, organic waste management, with emerging regulations and up-to-date analysis on environmental management tools such as lifecycle assessment in a comprehensive manner Offers the latest information on novel concepts and strategies for organic waste management, particularly zero waste and the circular bioeconomy Includes the latest research findings and future perspectives of innovative and emerging techniques of waste recycling, such as hydrothermal carbonization and vermicomposting
Advanced Organic Waste Management Advanced Organic Waste Management: Sustainable Practices and Approaches Copyright Contents Contributors 1 Organic waste: generation, composition, and health hazards 1 Organic waste: generation, composition and valorisation 1.1 Introduction 1.2 Sources, composition and characterization of the solid waste 1.2.1 Source-based classification 1.2.2 Type-based classification 1.2.3 Generation, composition and characterization of the solid waste 1.3 Wastes as a wealth and source of income 1.4 Valorization of organic solid waste 1.5 Conclusions References 2 Open dumping of organic waste: Associated fire, environmental pollution and health hazards 2.1 Introduction 2.1.1 Problems associated with the organic waste 2.1.2 Existing status of organic waste management 2.2 Fires at MSW landfills 2.2.1 Health hazards of landfill fires 2.2.2 Landfill fires impact on surrounding environment 2.3 Existing status of municipal solid waste management system 2.3.1 GHGs emissions 2.3.2 Organic waste degradation and its contribution to the greenhouse effect 2.4 Challenges and opportunities for organic waste treatment 2.4.1 Composting of organic waste 2.4.2 Biomethanation 2.4.3 Organic waste diversion 2.5 Approach required for sustainable organic waste management 2.6 Conclusion References 2 Resource recovery from organic waste 3 Composting and vermicomposting: Process optimization for the management of organic waste 3.1 Introduction 3.2 Compositing 3.2.1 Substrates suitable for compost 3.3 Types of composting and time optimization 3.3.1 Rotary drum composting 3.3.2 Vermicomposting 3.4 Conclusion Acknowledgments References 3 Energy recovery from organic waste 4 Composting techniques: utilization of organic wastes in urban areas of Indian cities 4.1 Introduction 4.2 Municipal solid waste management in Indian scenario 4.3 Composting practices in urban areas 4.4 Factors effecting urban composting 4.5 Recovery of resources from urban waste through composting process 4.6 Conclusion References 4 Environmental management tools for organic waste 5 Challenges and opportunities for disposal of floral waste in developing countries by using composting method 5.1 Introduction 5.2 Sources of flower waste 5.3 Types of flower used for worship 5.3.1 Jasmine 5.3.2 Lotus 5.3.3 Hibiscus 5.3.4 Rose 5.4 Significance of flower waste management 5.5 Flower waste management using different technique in current scenario 5.6 Utilization of various composting process using the different composting 5.6.1 Methods of composting 5.7 Case studies of composting of flower waste at SVNIT, Surat, India 5.8 Conclusions References 5 Innovative practices for circular bioeconomy in organic waste management 6 Transition towards sustainability 6 Valorization of industrial solid waste through novel biological treatment methods ^^e2^^80^^93 integrating different composting techniques 6.1 Introduction 6.2 Composting methodologies 6.2.1 Rotary drum composting 6.2.2 Vermicomposting 6.3 Implications of previous studies 6.3.1 Composting of paper mill sludge 6.3.2 Vermicomposting of PPMS 6.3.3 The new approach ^^e2^^80^^93 integrating different composting techniques 6.4 Evaluation of integrated rotary drum and vermicomposting process 6.4.1 Compost quality 6.5 Conclusions References 7 Vermicomposting of organic wastes by earthworms: Making wealth from waste by converting ‘garbage into gold’ for farmers 7.1 Introduction: mounting organic wastes - Growing economic and environmental burden on nations 7.2 Organic wastes that can be vermicomposted on large scale by earthworms 7.3 Species of waste-eater earthworms which can efficiently biodegrade 7.4 Mechanism of worm action in vermicomposting of organic wastes 7.5 Some key considerations in vermicomposting of organic wastes by earthworms 7.6 Some conditions essential for efficient action of earthworms to degrade the organic wastes 7.7 Vermicomposting of organic wastes on commercial scale 7.7.1 Some systems for vermicomposting of organic wastes on commercial scales 7.7.2 Windrows vermicomposting system 7.7.3 Wedge vermicomposting system 7.7.4 Bed vermicomposting system 7.7.5 Box vermicomposting systems 7.8 Nations in world promoting vermicomposting technology 7.9 Social, economic \& environmental benefits of vermicomposting organic waste 7.9.1 The social benefits 7.9.2 The economic benefits 7.9.3 The environmental benefits 7.10 Some problems encountered during vermi-composting of organic wastes and their solutions 7.11 Conclusions References 8 Current problems of vermistabilization as a sustainable strategy for recycling of excess sludge 8.1 Introduction 8.2 Vermistabilization for sludge 8.2.1 Vermi-wetland of excess sludge 8.2.2 Vermicomposting of dewatered sludge 8.3 Operation problems of vermistabilization 8.3.1 Vermi-wetland problems 8.3.2 Vermicomposting problems 8.4 Problems of environmental risks in sludge vermicompost 8.5 Conclusions Acknowledgements References 9 Recent advances in composting and vermicomposting techniques in the cold region: resource recovery, challenges, and way forward 9.1 Introduction 9.2 Recent composting methods adopted in the cold region 9.2.1 In-vessel composting 9.2.2 Psychrophilic microbes 9.2.3 Psychrophilic earthworms 9.3 Composting operations 9.3.1 Substrate pretreatments 9.3.2 Insulation 9.3.3 Additives 9.3.4 Carrier materials 9.3.5 Compost curing 9.4 Marketing potential 9.6 Conclusion 9.7 Future aspects Acknowledgment Author statement References 10 Resource recovery and value addition of terrestrial weeds through vermicomposting 10.1 Introduction 10.2 Vermicomposting of selected weeds 10.2.1 Study material 10.2.2 Experimental design 10.2.3 Sampling and analysis 10.2.4 Statistical analysis 10.2.5 Results and discussion 10.3 Conclusion References 11 Composting and vermicomposting of obnoxious weeds - A novel approach for the degradation of allelochemicals 11.1 Introduction 11.1.1 Invasion process 11.1.2 Allelopathic interaction of weeds in ecosystem 11.2 Indian terrestrial weeds and their ecological effects 11.2.1 Parthenium hysterophorus 11.2.2 Chromolaena odorata 11.2.3 Lantana camara 11.3 Composting and vermicomposting- best practice to manage terrestrial weeds 11.3.1 Composting technology 11.3.2 Vermicomposting 11.4 Conclusion References 12 Vermicomposting and bioconversion approaches towards the sustainable utilization of palm oil mill waste 12.1 Introduction 12.2 Vermicomposting of palm oil mill waste 12.3 Palm oil mill waste vermicompost as a soil amendment 12.4 Bioenergy potential of palm oil mill waste 12.5 Conclusion and future work References 13 Composition, characteristics and challenges of OFMSW for biogas production: Influence of mechanism and operating parameters to improve digestion process 13.1 Introduction 13.2 Compositional characteristics of OFMSW 13.3 Challenges in the optimization of waste through AD 13.3.1 Role of inhibitors in anaerobic digestion 13.4 Operating parameter/ factors affecting the AD 13.4.1 pH 13.4.2 Temperature 13.4.3 Retention time 13.4.4 Organic loading rate \(ORL\) 13.4.5 Substrates 13.4.6 Carbon/Nitrogen ratio \(C:N\) Ratio 13.5 Technologies used for improved biogas production 13.5.1 Physical pretreatment 13.5.2 Chemical pretreatment 13.5.3 Physicochemical pretreatment 13.5.4 Biological pre-treatment 13.6 Conclusion References 14 Factors affecting anaerobic digestion for biogas production: a review 14.1 Introduction 14.2 Anaerobic digestion 14.2.1 Biochemical methane potential test 14.2.2 Anaerobic reactors 14.3 Factors affecting anaerobic digestion 14.3.1 Temperature 14.3.2 pH 14.3.3 C/N ratio 14.3.4 Organic loading rate \(OLR\) 14.3.5 Toxicity 14.3.6 Trace elements 14.4 Conclusion References 15 Recent advancements in anaerobic digestion: A Novel approche for waste to energy 15.1 Introduction 15.2 Anaerobic digestion 15.3 Factors affecting anaerobic digestion 15.4 Limitations 15.5 Methods to enhance ad process 15.5.1 Pretreatment 15.5.2 Co-Digeston 15.6 Conclusion References 16 Solid state anaerobic digestion of organic waste for the generation of biogas and bio manure 16.1 Introduction 16.2 Anaerobic digestion \(AD\) 16.2.1 Hydrolysis 16.2.2 Acidogenesis 16.2.3 Acetogenesis 16.2.4 Methanogenesis 16.3 Critical factors influencing the AD process 16.4 Influence of substrate type on AD process 16.4.1 Low solids v/s high solids feedstock 16.5 Classification of anaerobic digestion process based on solids concentration 16.5.1 Wet anaerobic digestion process \(WAD\) 16.5.2 Solid state anaerobic digestion process \(SSAD\) 16.6 Operational strategies to overcome the SSAD limitations 16.6.1 Impeller mixing and rheology 16.6.2 Recirculation of slurry 16.6.3 Gas purging 16.7 Technologies available on solid state anaerobic digestion 16.7.1 Batch solid state anaerobic digestion systems 16.7.2 Technologies available on batch solid state anaerobic systems 16.7.3 Continuous solid state anaerobic digestion systems 16.7.4 Technologies available for continuous solids state anaerobic digestion 16.8 Enhanced hydrolysis of high solid substrates 16.8.1 Pre-treatment of substrate 16.8.2 Co-digestion of substrate 16.9 Conclusions and scope for future research Acknowledgment References 17 Use of petroleum refinery sludge for the production of biogas as an alternative energy source: a review 17.1 Introduction 17.2 Growing demand of oil and need for alternative energy sources 17.2.1 Generation of petroleum refinery sludge 17.2.2 Classification of petroleum refinery sludge 17.2.3 Formation of petroleum refinery sludge 17.2.4 Petroleum refinery sludge treatment and oil recovery methods 17.2.5 Petroleum sludge disposal methods 17.2.6 Anaerobic digestion 17.2.7 Pretreatment techniques 17.2.8 Biogas reactors 17.3 Conclusion References 18 A review on hydrothermal pretreatment of sewage sludge: Energy recovery options and major challenges 18.1 Introduction 18.2 Thermal hydrolysis \(TH\) 18.2.1 Mechanism of thermal hydrolysis 18.2.2 Research studies on TH process 18.3 Wet oxidation \(WO\) 18.3.1 Mechanism of WO 18.3.2 Research studies on WO process 18.4 Hydrothermal carbonisation \(HTC\) 18.4.1 Mechanism of HTC 18.4.2 Research studies on HTC process 18.5 Commercial systems in market 18.5.1 TH 18.5.2 WO 18.5.3 HTC 18.6 Gaps and scope for future research 18.7 Conclusions Acknowledgements References Web References 19 Bioreactor landfills: sustainable solution for disposal of municipal solid waste 19.1 Introduction 19.2 Dry tomb Vs bioreactor landfill 19.3 Key design criteria for bioreactor landfill 19.3.1 Cell design 19.3.2 Liner and cover system 19.3.3 MSW digestate density consideration 19.3.4 Leachate recirculation and management 19.4 Utilization of LFG for electricity generation 19.5 Sustainability of bioreactor landfill 19.5.1 Advantageous co-disposal of wastes in landfill bioreactor 19.5.2 Leachate strength reduction and treatment 19.5.3 Settlement and postclosure monitoring 19.6 Conclusion References 20 An approach for integrating sustainable development goals \(SDGs\) through organic waste management 20.1 Introduction 20.2 Organic waste generation 20.2.1 Existing scenarios of organic waste management 20.3 Challenges and opportunities associated with the organic waste management 20.3.1 Lack of skill and information 20.3.2 Lack of funds and infrastructure 20.3.3 Political conflicts 20.3.4 Poor or negligible implantation of rules 20.3.5 Lack of technical and coordination 20.3.6 Lack of awareness 20.3.7 Unavailability of advanced technologies and equipment’s 20.4 Potential benefits articulated towards health and safety environment 20.4.1 Extended employment opportunities 20.4.2 Clean water and sanitation 20.4.3 Good health and well-being 20.4.4 Decent work and economic growth 20.4.5 Industry, innovation and infrastructure 20.4.6 Sustainable cities and communities 20.4.7 Responsible consumption and production 20.4.8 Affordable and clean energy 20.4.9 Climate action 20.5 Integrating sustainability with organic waste management for sustainable livelihood 20.5.1 Sanitation worker at your door step 20.5.2 Smart city innovation 20.5.3 Formalizing informal recyclers and rag pickers 20.5.4 Youth engagement and community awareness 20.6 Conclusion Declaration of competing interest Acknowledgement References 21 Application of remote sensing and GIS in integrated solid waste management - a short review 21.1 Introduction 21.2 Role of GIS and RS in ISWM 21.3 Application of GIS and RS in ISWM 21.3.1 Estimation of waste generation and clustering 21.3.2 Identification of preferred location of temporary or primary storage and transfer stations 21.3.3 Optimization of waste collection route and transportation 21.3.4 Identification of suitable sites for processing and landfill 21.4 Conclusion References 22 Circular system of resource recovery and reverse logistics approach: key to zero waste and zero landfill 22.1 Introduction 22.2 Concept and philosophy of zero waste 22.3 Zero landfill concept 22.4 Implementation of zero waste program 22.4.1 ECO design 22.4.2 Identify resources within the waste stream and make a plan 22.4.3 Sorting of waste 22.4.4 Circular loops 22.4.5 Explore and apply waste reduction 22.4.6 Insist on producer responsibility 22.4.7 Stimulate the market for recycled and reusable products 22.4.8 Fund local and regional diversion and resource recovery initiatives 22.5 Life cycle management and assessment \(LCA\) 22.5.1 Benefits of LCA 22.5.2 Limitations of LCA 22.6 Reverse logistics approach 22.7 Green engineering principles 22.7.1 Principle 1: inherent rather than circumstantial 22.7.2 Principle 2: prevention instead of treatment 22.7.3 Principle 3: design for separation 22.7.4 Principle 4: maximize mass, energy, space, and time efficiency 22.7.5 Principle 5: output-pulled versus input-pushed 22.7.6 Principle 6: conserve complexity 22.7.7 Principle 7: durability rather than immortality 22.7.8 Principle 8: meet need, minimize excess 22.7.9 Principle 9: minimize material diversity 22.7.10 Principle 10: integrate local material and energy flows 22.7.11 Principle 11: design for commercial “afterlife” 22.7.12 Principle 12: renewable rather than depleting 22.8 Polluter pays principle 22.9 Extended producer responsibility 22.10 Zero waste index 22.11 Zero waste management strategies at industrial level 22.12 Benefits and challenges in implementation of zero waste philosophy 22.12.1 Benefits to the community 22.12.2 Economic and financial benefits 22.12.3 Benefits to the environment 22.12.4 Benefits to the industry 22.13 Critical success factors for ‘‘Zero waste” 22.13.1 Critical success factors ways to done 22.14 Conclusion References 23 Sustainable waste management approach: A paradigm shift towards zero waste into landfills 23.1 Introduction 23.2 Need of the paradigm shift towards zero waste 23.3 Strategic steps towards zero waste paradigm 23.3.1 Avoiding and minimizing waste generation 23.3.2 Management and treatment of waste 23.3.3 Regular monitoring and evaluation 23.4 Issues in zero waste strategy development 23.5 Application and limitations of the ZW framework 23.6 Current scenario in smart cities 23.7 Conclusion References 24 Current trends and future challenges in smart waste management in smart cities 24.1 Introduction 24.2 Waste management 24.2.1 Industry trends in waste management 24.2.2 High- end Technology for waste management 24.2.3 Waste to energy 24.2.4 Regulations for collecting and processing waste 24.3 Treatments and disposal 24.3.1 Fuel produced from MSW 24.3.2 Land filling 24.4 What is the need? 24.5 Waste management in smart cities 24.6 Sustainability framework 24.7 Future developments 24.8 Conclusion References 25 Smart waste management practices in smart cities: Current trends and future perspectives 25.1 Introduction 25.2 Waste management practices 25.2.1 Waste characterization 25.2.2 Waste quantification 25.2.3 Waste management 25.3 Integration of technologies for waste management in smart cities 25.3.1 Spatial technologies 25.3.2 Identification technologies 25.3.3 Data acquisition technologies 25.3.4 Data communication 25.4 Integrated framework for smart waste management practices 25.4.1 Module 1: product lifecycle data collation framework 25.4.2 Module 2: minimization of waste generation through innovative ideas by aware and responsible citizens 25.4.3 Module 3: optimal infrastructure with intelligent and sensor-based technologies for effective segregation, real-time collection, and recycling of waste 25.5 Factors affecting the integrated framework of smart waste management practices 25.6 Uncertainties associated with smart waste management 25.7 Future prospects 25.8 Conclusions References 26 Waste management of rural slaughterhouses in developing countries 26.1 Introduction 26.2 Challenges in organic waste recycling 26.2.1 Segregation of waste 26.2.2 High moisture content 26.2.3 Presence of infectious pathogens 26.2.4 Removal of pollutants 26.3 Treatment alternatives of slaughterhouse waste 26.3.1 Incineration 26.3.2 Rendering 26.3.3 Composting 26.3.4 Anaerobic digestion 26.3.5 Alkaline hydrolysis 26.3.6 Enzymatic management 26.3.7 Drying treatment 26.4 Achievement of circular bioeconomy through waste valorization 26.5 Conclusion and recommendations Acknowledgements References 27 An emerging trend in waste management of COVID-19 27.1 Introduction 27.2 Transmission, symptoms, data of COVID-19 disease 27.3 Impacts of the COVID-19 pandemic 27.3.1 Social impacts 27.3.2 Economic impacts 27.3.3 Healthcare impacts 27.3.4 Impact of COVID-19 on the waste management sector 27.4 Types of protective systems being used 27.5 Biomedical wastes generated during COVID-19 and their effects 27.6 Treatments for biomedical wastes generated during COVID-19 27.6.1 Collection 27.6.2 Disinfection technologies employed to treat bio-medical waste \(BMW or COVID-waste\) 27.6.3 Thermal based technologies 27.6.4 Chemical based technologies 27.6.5 Irradiative methods 27.6.6 Mechanical methods 27.6.7 Biological methods 27.7 Future outlook and challenges 27.7.1 General modifications- to tackle the crisis better 27.8 Websites References 28 Implications of COVID-19 pandemic on waste management practices: Challenges, opportunities, and strategies towards sustainability 28.1 Introduction 28.2 The global overview of the solid waste during the COVID-19 pandemic 28.2.1 Pandemic induced surge in the solid waste generation 28.2.2 Implications of COVID-19 on food supply chain and related food waste generation 28.3 Solid waste management and the COVID-19 pandemic 28.3.1 Challenges of solid waste management during the COVID-19 pandemic 28.3.2 Policies and guidelines for managing COVID-19 related solid waste 28.3.3 Opportunities and strategies for sustainable solid waste management 28.4 Future prospects 28.5 Conclusions References Index