دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2nd ed. 2022]
نویسندگان: Ivan B. Djordjevic
سری:
ISBN (شابک) : 3030984907, 9783030984908
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 801
[794]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 31 Mb
در صورت تبدیل فایل کتاب Advanced Optical and Wireless Communications Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های ارتباطات نوری و بی سیم پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش جدید این کتاب درسی پرطرفدار ساختار خود را حفظ کرده و موضوعات پیشرفته ای را معرفی می کند: (i) ارتباطات بی سیم، (ii) ارتباطات نوری فضای آزاد (FSO)، (iii) ارتباطات بی سیم نوری داخلی (IR) و (iv) ارتباطات فیبر نوری، اما به طور کامل محتوا را برای فناوری های جدید و برنامه های کاربردی به روز می کند. نویسنده مفاهیم اساسی مانند اصول انتشار، فرمتهای مدولاسیون، کدگذاری کانال، اصول تنوع، پردازش سیگنال MIMO، مدولاسیون چند حامل، یکسان سازی، مدولاسیون و کدگذاری تطبیقی، اصول تشخیص و انتقال تعریف شده توسط نرمافزار را ارائه میکند و ابتدا آنها را توصیف میکند و سپس دنبال میکند. نگاهی دقیق به هر سیستم خاص این کتاب مستقل و ساختار یافته است تا راهنمایی های ساده ای را برای خوانندگانی که به دنبال درک اصول و کسب دانش نظری و عملی در مورد ارتباطات بی سیم، ارتباطات نوری در فضای آزاد و ارتباطات فیبر نوری هستند، ارائه دهد، که همه آنها می توانند به راحتی در مطالعات، تحقیقات به کار روند. و کاربردهای عملی این کتاب درسی برای دوره های سطح بالای کارشناسی یا کارشناسی ارشد در ارتباط فیبر نوری، ارتباطات بی سیم، و مشکلات ارتباط نوری فضای آزاد، یک ضمیمه با تمام مطالب پیش زمینه مورد نیاز، و مشکلات تکالیف در نظر گرفته شده است. در ویرایش دوم، علاوه بر بهروزرسانی فصلهای موجود و درج مشکلات، یک فصل جدید اضافه شده است که مربوط به امنیت لایه فیزیکی است، بنابراین مسائل امنیتی و قابلیت اطمینان را پوشش میدهد. مطالب جدید در مورد فناوری های 5G و 6G در فصل های مربوطه اضافه شده است.
The new edition of this popular textbook keeps its structure, introducing the advanced topics of: (i) wireless communications, (ii) free-space optical (FSO) communications, (iii) indoor optical wireless (IR) communications, and (iv) fiber-optics communications, but thoroughly updates the content for new technologies and practical applications. The author presents fundamental concepts, such as propagation principles, modulation formats, channel coding, diversity principles, MIMO signal processing, multicarrier modulation, equalization, adaptive modulation and coding, detection principles, and software defined transmission, first describing them and then following up with a detailed look at each particular system. The book is self-contained and structured to provide straightforward guidance to readers looking to capture fundamentals and gain theoretical and practical knowledge about wireless communications, free-space optical communications, and fiber-optics communications, all which can be readily applied in studies, research, and practical applications. The textbook is intended for an upper undergraduate or graduate level courses in fiber-optics communication, wireless communication, and free-space optical communication problems, an appendix with all background material needed, and homework problems. In the second edition, in addition to the existing chapters being updated and problems being inserted, one new chapter has been added, related to the physical-layer security thus covering both security and reliability issues. New material on 5G and 6G technologies has been added in corresponding chapters.
Preface Contents About the Author 1: Introduction 1.1 Historical Perspective of Optical and Wireless Communication Systems 1.1.1 Wireless Communication Historical Perspective 1.1.2 Optical Communication Historical Perspective 1.2 Optical Communications Systems and Networks Fundamentals 1.3 Wireless Communications Systems Fundamentals 1.4 Organization of the Book 1.5 Concluding Remarks References 2: Propagation Effects in Optical and Wireless Communications Channels, Noise Sources, and Channel Impairments 2.1 Electromagnetic Field and Wave Equations 2.1.1 Vector Derivatives (grad, div, and curl) in Orthogonal Curvilinear Coordinate System 2.1.2 Vector Derivatives (grad, div, and curl) in Cylindrical Polar and Spherical Coordinate Systems 2.2 Propagation of Electromagnetic Waves 2.2.1 Propagation of Plane Waves 2.2.2 Vectorial Nature of the Light, Snell´s Law of Refraction, Reflection Coefficients, and Total Internal Reflection 2.2.2.1 Polarization 2.2.2.2 Snell´s Law of Refraction, Reflection Coefficients, and Total Internal Reflection 2.2.2.3 Optical Fibers 2.2.2.4 Polarizing Elements 2.2.3 Electromagnetic Potentials and Electromagnetic Waves 2.2.3.1 Electromagnetic Potentials 2.2.3.2 Concept of Antenna 2.2.3.3 Spherical Waves 2.2.3.4 Plane Waves 2.2.3.5 Hertzian Dipole 2.2.3.6 Straight-Wire Antenna 2.2.3.7 Cylindrical Waves 2.2.3.8 Paraxial Approximation and Gaussian Beam 2.2.4 Interference, Coherence, and Diffraction in Optics 2.2.4.1 Interference 2.2.4.2 Coherence 2.2.4.3 Diffraction Theory 2.2.4.4 Fresnel and Fraunhofer Approximations 2.2.5 Laser Beam Propagation Over the Atmospheric Turbulence Channels 2.2.5.1 Paraxial Wave Equation 2.2.5.2 Split-Step Beam Propagation Method 2.2.5.3 Paraxial Fresnel and Fraunhofer Diffraction Approximations 2.2.5.4 Rytov Method 2.2.5.5 Modeling Atmospheric Turbulence Effects 2.2.5.6 Kolmogorov Theory of Turbulence and Corresponding Generalizations 2.2.5.7 Rytov Method of Small Perturbations 2.2.5.8 Gamma-Gamma Distribution of Irradiance 2.3 Propagation Effects in Wireless Communication Channels 2.3.1 Path Loss and Shadowing Propagation Effects in Wireless Communication Channels 2.3.1.1 Free-Space Path Loss and Doppler Shift 2.3.1.2 Radar Range Equation 2.3.1.3 Ray Tracing Approximation 2.3.1.4 General Ray Tracing (GRT) Model 2.3.1.5 Scattering Effects 2.3.1.6 Simplified Path Loss and Multislope Models 2.3.1.7 Empirical Path Loss Models 2.3.1.8 Shadowing Effects 2.3.1.9 Outage Probability and Cell Coverage Area 2.3.2 Statistical Multipath Wireless Communication Channel Models 2.3.2.1 Multipath Channel Models 2.3.2.2 Narrowband Fading Model 2.3.2.3 Clark-Jakes Model 2.3.2.4 Envelope and Power Distributions in Narrowband Models 2.3.2.5 Average Fade Duration 2.3.2.6 Discrete-Time (DT) Model 2.3.2.7 Finite-State Markov Channel (FSMC) Model 2.3.2.8 Wideband Channel Models 2.3.2.9 Power Delay Profile and Coherence Bandwidth 2.3.2.10 Channel Coherence Time and Fading Channels Classification 2.4 Signal Propagation in Optical Fibers and Corresponding Channel Impairments 2.4.1 Fiber Attenuation and Insertion Losses 2.4.2 Chromatic Dispersion Effects 2.4.3 Polarization Mode Dispersion (PMD) 2.4.4 Fiber Nonlinearities 2.4.4.1 Fiber Nonlinearities Classification 2.4.4.2 Effective Length and Effective Cross-Sectional Area 2.4.4.3 Kerr Effect, Self-Phase Modulation, and Nonlinear Length 2.4.4.4 Cross-Phase Modulation 2.4.4.5 Four-Wave Mixing 2.4.4.6 Raman Scattering 2.4.4.7 Brillouin Scattering 2.4.5 Generalized Nonlinear Schrödinger Equation 2.4.5.1 GNLSE for Single Channel Transmission 2.4.5.2 GNLSE for Multichannel Transmission 2.4.5.3 GNLSE for Polarization Division Multiplexing Systems 2.4.5.4 GNLSE for Spatial Division Multiplexing Systems 2.5 Noise Sources in Optical Channels 2.5.1 Mode Partition Noise 2.5.2 Reflection-Induced Noise 2.5.3 Relative Intensity Noise (RIN) and Laser Phase Noise 2.5.4 Modal Noise 2.5.5 Thermal Noise 2.5.6 Spontaneous Emission Noise and Noise Beating Components 2.5.7 Quantum Shot Noise 2.5.8 Dark Current Noise 2.5.9 Crosstalk 2.6 Indoor Optical Wireless Communication Channels 2.6.1 Infrared Optical Wireless Communications 2.6.2 Visible Light Communications (VLCs) 2.7 Concluding Remarks 2.8 Problems References 3: Components, Modules, and Subsystems 3.1 Key Optical Components, Modules, and Subsystems 3.1.1 Optical Communications Basics 3.1.2 Optical Transmitters 3.1.2.1 Lasers 3.1.2.2 External Modulators 3.1.2.3 I/Q Modulators and Polar Modulators 3.1.3 Optical Receivers 3.1.4 Optical Fibers 3.1.5 Optical Amplifiers 3.1.5.1 Semiconductor Optical Amplifier (SOA) 3.1.5.2 Raman Amplifiers 3.1.5.3 Erbium-Doped Fiber Amplifier (EDFA) 3.1.6 Optical Processing Components and Modules 3.1.6.1 Optical Couplers 3.1.6.2 Optical Filters 3.1.6.3 WDM Multiplexers and Demultiplexers 3.1.7 Principles of Coherent Optical Detection 3.1.8 Optical Hybrids 3.1.9 Coherent Optical Balanced Detectors 3.2 Modules/Components Relevant to Wireless Communications 3.2.1 DSP Basics 3.2.1.1 The Role of System (Transfer) Function and Relationship Between DT and CT Fourier Transforms 3.2.1.2 Discrete-Time System Realizations 3.2.2 Direct Digital Synthesizer (DDS) 3.2.3 Multirate DSP and Resampling 3.2.3.1 Downsampling 3.2.3.2 Upsampling 3.2.3.3 Resampling 3.2.3.4 Noble Identities 3.2.3.5 Cascaded-Integrator-Comb (CIC) Filter-Based Upsampling and Downsampling 3.2.3.6 Polyphase Decomposition 3.2.3.7 Polyphase Filter-Based Resampling 3.2.4 Antenna Arrays 3.2.5 Automatic Gain Control (AGC) 3.3 Concluding Remarks 3.4 Problems References 4: Capacities of Wireless and Optical Channels 4.1 Mutual Information, Channel Capacity, and Information Capacity Theorem 4.1.1 Mutual Information and Information Capacity 4.1.2 Capacity of Continuous Channels 4.2 Capacity of Flat-Fading and Frequency-Selective Wireless Fading Channels 4.2.1 Flat-Fading Channel Capacity 4.2.1.1 Channel Side Information at Receiver 4.2.1.2 Full CSI 4.2.2 Frequency-Selective Fading Channel Capacity 4.2.2.1 Time-Invariant Channel Capacity 4.2.2.2 Time-Variant Channel Capacity 4.3 Capacity of Channels with Memory 4.3.1 Markov Sources and Their Entropy 4.3.2 McMillan Sources and Their Entropy 4.3.3 McMillan-Khinchin Model for Channel Capacity Evaluation 4.4 Calculation of Information Capacity by the Forward Recursion of the BCJR Algorithm 4.5 Information Capacity of Systems with Coherent Optical Detection 4.6 Hybrid Free-Space Optical (FSO)-RF Channel Capacity 4.6.1 Hybrid FSO-RF System Model Description 4.6.2 Adaptive Modulation and Coding (AMC) in Hybrid FSO-RF Communications 4.7 Concluding Remarks 4.8 Problems References 5: Advanced Modulation and Multiplexing Techniques 5.1 Signal Space Theory in Wireless Communications 5.1.1 Geometric Representation of Signals 5.1.2 Modulators and Demodulators 5.1.3 Frequency-Shift Keying (FSK) 5.1.4 M-ary Pulse Amplitude Modulation (PAM) 5.1.5 Passband Digital Wireless/Optical Transmission 5.2 Multilevel (Two-Dimensional) Modulation Schemes 5.2.1 Two-Dimensional Signal Constellations for Wireless Communications 5.2.2 M-ary PSK Transmitters for Optical Communications 5.2.3 Star-QAM Transmitters for Optical Communications 5.2.4 Square- and Cross-QAM Transmitters for Optical Transmission 5.3 Multicarrier Modulation 5.3.1 Multicarrier Systems with Nonoverlapping Subcarriers 5.3.2 Multicarrier Systems with Overlapping Subcarriers 5.3.3 Dealing with Fading Effects on Subcarrier Level 5.4 MIMO Fundamentals 5.5 Polarization-Division Multiplexing (PDM) and 4-D Signaling 5.6 Spatial-Division Multiplexing and Multidimensional Signaling 5.6.1 SDM in Wireless Communications 5.6.2 SDM and Multidimensional Signaling in Fiber-Optic Communications 5.6.3 SDM and Multidimensional Signaling in Free-Space Optical (FSO) Communications 5.7 Optimum Signal Constellation Design 5.7.1 Iterative Polar Modulation (IPM) 5.7.2 Signal Constellation Design for Rotationally Symmetric Optical Channels 5.7.3 Energy-Efficient Signal Constellation Design 5.7.4 Optimum Signal Constellation Design (OSCD) 5.8 Nonuniform Signaling 5.9 Concluding Remarks 5.10 Problems References 6: Advanced Detection Techniques and Compensation of Channel Impairments 6.1 Detection and Estimation Theory Fundamentals 6.1.1 Geometric Representation of Received Signals 6.1.2 Correlation and Matched Filter-Based Receivers Maximizing the Signal-to-Noise Ratio 6.1.3 Optimum and LLR Receivers 6.1.4 Symbol Error Probability Calculation 6.1.4.1 Calculation of Symbol Error Probability 6.1.4.2 Calculation of Bit Error Probability of Binary Signal Constellations 6.1.4.3 Calculation of Symbol Error Probability of M-ary QAM 6.1.4.4 Union-Bound Approximation 6.1.5 Estimation Theory Fundamentals 6.2 Wireless Communication Systems Performance 6.2.1 Outage Probability Scenario 6.2.2 Average Error Probability Scenario 6.2.3 Combined Outage and Average Error Probability Scenario 6.2.4 Moment-Generating Function (MGF)-Based Approach to Average Error Probability Calculation 6.2.5 Performance Evaluation in the Presence of Doppler Spread and Fading 6.3 Channel Equalization Techniques 6.3.1 ISI-Free Digital Transmission and Partial-Response Signaling 6.3.2 Zero-Forcing Equalizers 6.3.3 Optimum Linear Equalizer in MMSE Sense 6.3.4 Wiener Filtering 6.3.5 Adaptive Equalization 6.3.6 Decision-Feedback Equalization 6.3.7 MLSD (MLSE) or Viterbi Equalization 6.3.8 Blind Equalization 6.4 Synchronization Techniques 6.5 Adaptive Modulation Techniques 6.5.1 Variable-Power Variable-Rate Modulation Techniques 6.5.2 Adaptive Coded Modulation 6.6 Volterra Series-Based Equalization 6.7 Digital Backpropagation in Fiber-Optics Communications 6.8 Optical Communication Systems with Coherent Optical Detection 6.8.1 Balanced Coherent Optical Detection for 2-D Modulation Schemes 6.8.2 Polarization Diversity and Polarization-Division Demultiplexing 6.8.3 Homodyne Coherent Optical Detection Based on PLLs 6.8.4 Phase Diversity Receivers 6.8.5 Dominant Coherent Optical Detection Noise Sources 6.8.5.1 Laser Phase Noise 6.8.5.2 Polarization Noise 6.8.5.3 Transimpedance Amplifier Noise 6.8.5.4 Coherent Optical Detection in the Presence of ASE Noise 6.9 Compensation of Atmospheric Turbulence Effects 6.9.1 Adaptive Optics Techniques 6.9.1.1 Zernike Representation of Atmospheric Turbulence 6.9.1.2 Shack-Hartmann Wavefront Sensor 6.9.1.3 Wavefront Correctors 6.9.2 SLM-Based Backpropagation Method 6.10 Concluding Remarks 6.11 Problems References 7: OFDM for Wireless and Optical Communications 7.1 Introduction, OFDM Basics, and Generation of Subcarriers Using Inverse FFT 7.1.1 Introduction to OFDM 7.1.2 OFDM Basics 7.1.3 Generation of OFDM Signals 7.2 Guard Time, Cyclic Extension, and Windowing 7.2.1 Guard Time and Cyclic Extension 7.2.2 Windowing 7.3 Bandwidth Efficiency of OFDM 7.4 OFDM Parameter Selection, OFDM Building Blocks, and Parallel Channel Decomposition 7.4.1 OFDM Parameter Selection 7.4.2 OFDM Building Blocks 7.4.3 OFDM Parallel Channel Decomposition and Channel Modelling 7.5 CO-OFDM Principles, DFT Windowing, Frequency Synchronization, Phase Estimation, and Channel Estimation 7.5.1 Principles of Coherent Optical OFDM (CO-OFDM) 7.5.2 DFT Window Synchronization 7.5.3 Frequency Synchronization in OFDM Systems 7.5.4 Phase Estimation in OFDM Systems 7.5.5 Channel Estimation in OFDM Systems 7.5.5.1 Pilot-Aided Channel Estimation 7.5.5.2 Data-Aided Channel Estimation 7.6 Differential Detection in OFDM Systems 7.7 OFDM Applications in Wireless Communications 7.7.1 OFDM in Digital Audio Broadcasting (DAB) 7.7.2 Coded-OFDM in Digital Video Broadcasting (DVB) 7.8 OFDM for Wi-Fi, LTE, and WiMAX 7.9 OFDM in Ultra-Wideband Communication (UWC) 7.10 Optical OFDM Applications 7.10.1 Optical OFDM System Types 7.10.1.1 Coherent Optical OFDM (CO-OFDM) Systems 7.10.1.2 Direct Detection Optical OFDM (DDO-OFDM) 7.10.2 High-Speed Spectrally Efficient CO-OFDM Systems 7.10.2.1 Polarization-Division Multiplexed OFDM 7.10.2.2 OFDM-Based Superchannel Transmission 7.10.3 OFDM in Multimode Fiber Links 7.11 Concluding Remarks 7.12 Problems References 8: Diversity and MIMO Techniques 8.1 Diversity Techniques 8.1.1 Basic Diversity Schemes 8.1.2 Receiver Diversity 8.1.2.1 Selection Combining 8.1.2.2 Threshold Combining 8.1.2.3 Maximum-Ratio Combining 8.1.2.4 Equal-Gain Combining 8.1.3 Transmitter Diversity 8.1.3.1 Transmitter Diversity when CSI Is Available on Transmitter Side 8.1.3.2 Transmitter Diversity when CSI Is Not Available: Alamouti Scheme 8.2 MIMO Optical and Wireless Techniques 8.2.1 MIMO Wireless and Optical Channel Models 8.2.2 Parallel Decomposition of Optical and Wireless MIMO Channels 8.2.3 Space-Time Coding: ML Detection, Rank Determinant, and Euclidean Distance Criteria 8.2.4 Relevant Classes of Space-Time Codes (STCs) 8.2.4.1 Alamouti Code (Revisited) and Orthogonal Designs 8.2.4.2 Linear Space-Time Block Codes 8.2.4.3 Space-Time Trellis Codes (STTCs) 8.2.5 Spatial Division Multiplexing (SDM) 8.2.5.1 BLAST Encoding Architectures 8.2.5.2 Multi-group Space-Time Coded Modulation (MG-STCM) 8.2.6 Linear and Decision-Feedback MIMO Receivers for Uncoded Signals 8.2.7 Suboptimum MIMO Receivers for Coded Signals 8.2.7.1 Linear and Zero-Forcing Receivers (Interfaces) 8.2.7.2 Linear MMSE Receiver (Interface) 8.2.7.3 Decision-Feedback and BLAST Receivers (Interfaces) 8.2.7.4 Spatial Interference Cancellation by Iterative Receiver (Interface) 8.3 Iterative MIMO Receivers 8.3.1 Factor Graph Fundamentals 8.3.2 Factor Graphs for MIMO Channels and Channels with Memory 8.3.3 Sum-Product Algorithm 8.3.4 Sum-Product Algorithm for Channels with Memory 8.3.5 Iterative MIMO Receivers for Uncoded Signals 8.3.6 Factor Graphs for Linear Block and Trellis Channel Codes 8.3.7 Iterative MIMO Receivers for Space-Time Coded Signals 8.4 Broadband MIMO 8.4.1 MIMO-OFDM Scheme 8.4.2 Space-Frequency Block Coding-Based MIMO 8.5 MIMO Channel Capacity 8.5.1 Capacity of Deterministic (Static) MIMO Channels 8.5.2 Capacity of Random MIMO Channels 8.5.2.1 Ergodic Capacity 8.5.2.2 Non-ergodic Capacity 8.5.2.3 Correlated Fading Channel Capacity 8.5.2.4 MIMO-OFDM Channel Capacity 8.6 MIMO Channel Estimation 8.6.1 Maximum Likelihood (ML) MIMO Channel Estimation 8.6.2 Least Squares (LS) MIMO Channel Estimation 8.6.3 Linear Minimum Mean Square Error (LMMSE) MIMO Channel Estimation 8.6.4 Selection of Pilot Signals 8.7 Massive MIMO 8.7.1 Massive MIMO Concepts 8.7.2 Massive MIMO Detection Schemes 8.8 Concluding Remarks 8.9 Problems References 9: Advanced Coding and Coded Modulation Techniques 9.1 Linear Block Codes Fundamentals 9.2 BCH Codes Fundamentals 9.3 Trellis Description of Linear Block Codes and Viterbi Decoding Algorithm 9.4 Convolutional Codes 9.5 RS Codes, Concatenated Codes, and Product Codes 9.6 Coding with Interleaving 9.7 Codes on Graphs Basics 9.8 Turbo Codes 9.9 Turbo-Product Codes 9.10 LDPC Codes 9.10.1 Binary LDPC Codes 9.10.2 Decoding of Binary LDPC Codes 9.10.3 FPGA Implementation of Binary LDPC Decoders 9.10.4 Decoding of Nonbinary LDPC Codes 9.10.5 Design of LDPC Codes 9.10.5.1 Gallager Codes 9.10.5.2 Tanner Codes and Generalized LDPC (GLDPC) Codes 9.10.5.3 MacKay Codes 9.10.5.4 Large-Girth Quasi-Cyclic (QC) Binary LDPC Codes 9.10.6 Rate-Adaptive LDPC Coding 9.10.7 Rate-Adaptive Coding Implementations in FPGA 9.10.7.1 Rate-Adaptive LDPC Coding in FPGA 9.10.7.2 Rate-Adaptive GLDPC Coding in FPGA 9.11 Coded Modulation and Unequal Error Protection 9.11.1 Coded Modulation Fundamentals 9.11.2 Trellis-Coded Modulation 9.11.3 Multilevel Coded Modulation and Unequal Error Protection 9.11.4 Bit-Interleaved Coded Modulation (BICM) 9.11.5 Turbo Trellis-Coded Modulation 9.12 Hybrid Multidimensional Coded Modulation Scheme for High-Speed Optical Transmission 9.12.1 Hybrid Coded Modulation 9.12.2 Multilevel Nonbinary LDPC-Coded Modulation (ML-NB-LDPC-CM) for High-Speed Optical Transmissions 9.13 Multidimensional Turbo Equalization 9.13.1 Nonlinear Channels with Memory 9.13.2 Nonbinary MAP Detection 9.13.3 Sliding-Window Multidimensional Turbo Equalization 9.13.4 Nonlinear Propagation Simulation Study of Turbo Equalization 9.13.5 Experimental Study of Time-Domain 4D-NB-LDPC-CM 9.13.6 Quasi-Single-Mode Transmission Over Transoceanic Distances Using Few-Mode Fibers 9.14 Optimized Signal Constellation Design and Optimized Bit-to-Symbol Mapping-Based Coded Modulation 9.14.1 Multidimensional Optimized Signal Constellation Design 9.14.2 EXIT Chart Analysis of OSCD Mapping Rules 9.14.3 Nonlinear Optimized Signal Constellation Design-Based Coded Modulation 9.14.4 40 Tb/s Transoceanic Transmission Enabled by 8-ary OSCD 9.15 Adaptive Coding and Adaptive Coded Modulation 9.15.1 Adaptive Coded Modulation 9.15.2 Adaptive Nonbinary LDPC-Coded Multidimensional Modulation for High-Speed Optical Communications 9.15.3 Adaptive Hybrid FSO-RF-Coded Modulation 9.16 Concluding Remarks 9.17 Problems References 10: Spread Spectrum, CDMA, and Ultra-Wideband Communications 10.1 Spread Spectrum Systems 10.1.1 Spread Spectrum Systems Fundamentals 10.1.2 Direct Sequence-Spread Spectrum (DS-SS) Systems 10.1.2.1 DS-SS Transmitters and Receivers 10.1.2.2 Acquisition and Tracking 10.1.2.3 RAKE Receiver 10.1.2.4 Spreading Sequences 10.1.3 Frequency Hopping-Spread Spectrum (FH-SS) Systems 10.2 Code-Division Multiple Access (CDMA) Systems 10.2.1 Signature Waveforms 10.2.2 Synchronous and Asynchronous CDMA Models 10.2.2.1 Basic CDMA Models 10.2.2.2 Discrete-Time CDMA Models 10.3 Multiuser Detection 10.3.1 Conventional Single-User Correlator Receiver 10.3.2 Optimum Multiuser Detection 10.3.3 Decorrelating and Linear MMSE Multiuser Detectors 10.3.4 Decision-Driven Multiuser Detectors 10.4 Optical CDMA Systems 10.5 Hybrid OFDM-CDMA Systems 10.6 Ultra-Wideband (UWB) Communications 10.7 Concluding Remarks 10.8 Problems References 11: Physical-Layer Security for Wireless and Optical Channels 11.1 Security Issues 11.2 Information-Theoretic vs. Computational Security 11.2.1 Information-Theoretic (Perfect) Security 11.2.2 Computational Security 11.2.3 Information-Theoretic Secrecy Metrics 11.3 Wyner´s Wiretap Channel 11.4 Broadcast Channel with Confidential Messages and Wireless Channel Secrecy Capacity 11.4.1 Broadcast Channel with Confidential Messages 11.4.2 Wireless Channel Secrecy Capacity 11.5 Secret-Key Generation (Agreement) Protocols 11.5.1 Source-Type Secret-Key Generation 11.5.2 Channel-Type Secret-Key Generation 11.6 Coding for Physical-Layer Security Systems 11.6.1 Coding for Weak Secrecy Systems 11.6.1.1 Two-Edge-Type LDPC Coding 11.6.1.2 Punctured LDPC Coding 11.6.1.3 Polar Codes 11.6.2 Coding for Strong Secrecy Systems 11.6.2.1 Coset Coding with Dual of LDPC Codes 11.6.2.2 Hash Functions and Extractor-Based Coding 11.6.3 Information Reconciliation 11.7 Privacy Amplification 11.8 Wireless Channels Physical-Layer Security 11.8.1 PLS for Wireless MIMO Channels 11.8.2 Secret-Key Generation in Wireless Networks 11.9 Optical Channels Physical-Layer Security 11.9.1 SDM-Fibers-Based Physical-Layer Security 11.9.2 FSO Physical-Layer Security 11.10 Concluding Remarks 11.11 Problems References Appendix A.1 Groups A.2 Fields A.3 Vector Spaces A.4 Algebra of Finite Fields A.5 Pulse-Position Modulation (PPM) A.6 The z-Transform A.6.1 Bilateral z-Transform A.6.2 Properties of z-Transform and Common z-Transform Pairs A.6.3 The Inversion of the z-Transform References Index