دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Mubarak N., Sattar S., Mazari S.A., Nizamuddin S. (ed.) سری: Micro and Nano Technologies ISBN (شابک) : 9780323904049 ناشر: Elsevier سال نشر: 2023 تعداد صفحات: 419 [420] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانومواد و نانوکامپوزیت های پیشرفته برای سیستم های بیوالکتروشیمیایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half title Title Copyright Contributors Contents Dedication Preface Foreword About the editors Acknowledgments Chapter 1 Introduction to the microbial electrochemical system 1.1 Electrochemical cells and bioelectrochemical systems \(BESs\) 1.1.1 Historical development of BESs 1.2 Biological fundamentals of BESs 1.3 Electroactive biofilm 1.4 Applications of BESs 1.5 Electrodes and bioelectrodes 1.6 Membranes 1.7 Electrochemical cell design 1.8 Characterization of BESs 1.9 Conclusions and perspectives References Chapter 2 Electricity generation with the use of microbial electrochemical systems 2.1 Introduction to microbial electrochemical systems 2.2 Electrogenic organisms 2.3 Typical applications for microbial electrogenesis 2.3.1 Wastewater treatment and energy generation 2.3.2 Hydrogen generation 2.3.3 Biosensors 2.4 Principles of microbial electrochemical systems: fuel cells \(MFCs\) and electrolysis cells \(MECs\) 2.4.1 Microbial fuel cell 2.4.2 Microbial electrolysis cell 2.5 MFC performance: operation parameters 2.6 MFC optimization 2.6.1 Scaling criteria 2.6.2 MFC design: architectures and reported efficiencies 2.6.3 State of the art in MFC scaling-up 2.7 Challenges to improve MFC performance at real-life scale 2.7.1 Manufacturing, cost, carbon footprint, and comparison with clean electricity technologies 2.8 Perspectives, the future of MFCs 2.9 Concluding remarks Acknowledgments References Chapter 3 Overview of wastewater treatment approaches related to the microbial electrochemical system 3.1 Introduction 3.2 Current research on wastewater treatment techniques 3.3 Comparison between conventional systems and microbial electrochemical systems for wastewater treatment 3.4 Classification of microbial electrochemical systems 3.5 Working principle and mechanism microbial electrochemical systems for wastewater treatment 3.6 Bottlenecks and troubleshooting involved in MESs 3.7 Conclusions and future prospects References Chapter 4 Synthesis and application of nanocomposite material for microbial fuel cells 4.1 Introduction 4.2 Synthesis of nanocomposite materials used in microbial fuel cells 4.2.1 Hydrothermal synthesis of nanocomposites 4.2.2 Sol-gel 4.2.3 Chemical reduction 4.2.4 Microwaves 4.2.5 Sonochemistry 4.2.6 Synthesis for polymers 4.3 Characterization of nanocomposites materials used as electrodes in microbial fuel cells 4.3.1 Structural characterization 4.3.2 Electrochemical characterization of nanomaterials 4.3.3 Evaluation of nanomaterials in microbial fuel cells 4.4 Nanoparticles-based electrodes 4.4.1 Anodes 4.4.2 Cathodes 4.5 Performance of nanomaterials in anodes and cathodes 4.6 Conclusions References Chapter 5 Classification of nanomaterials and nanocomposites for anode material 5.1 Introduction 5.2 Carbon-based nanomaterials and nanocomposites 5.2.1 Carbon nanotubes 5.2.2 Graphene and graphene oxide 5.2.3 Other carbonaceous nanomaterials and nanocomposites 5.3 Transition metal and/or transition metal oxide decorated carbonaceous anode 5.3.1 Transition metal modified carbonaceous anodes or transition metal/carbon nanocomposites 5.3.2 Transition metal oxide decorated carbonaceous anodes or transition metal oxide/carbon nanocomposites 5.3.3 Transition metal and transition metal oxide comodified carbonaceous anodes 5.4 Conductive polymers improved carbonaceous nanocomposites 5.5 Other nanocomposites \(transition metal/transition metal oxide/polymer/carbon/transition metal carbide, etc.\) 5.6 Other nanomaterials or nanostructure for improving anode performances 5.7 Future challenge of nanomaterial/nanocomposite material 5.8 Conclusions References Chapter 6 Properties of nanomaterials for microbial fuel cell application 6.1 Bioelectrochemical energy generation systems principle and types 6.2 Components of MFC 6.3 Properties of vital components and their intrinsic factors to enhance electricity output 6.3.1 Microorganisms 6.3.2 Biofilm 6.3.3 Electrode 6.3.4 Electron transport mechanisms between microorganisms and an electrode 6.3.5 Membranes 6.3.6 Ion exchange capacity \(IEC\) 6.3.7 Oxygen permeability 6.3.8 Membrane conductivity 6.4 Different types of nanomaterials in MFC 6.4.1 Nanomaterials used for anode modification and their intrinsic properties 6.4.2 Carbon materials 6.4.3 Metal nanoparticles 6.4.4 Transition metal-based nanoparticles \(metal sulfide, metal oxide, metal carbide\) 6.4.5 Polymers 6.4.6 Polyelectrolyte modified NMs 6.4.7 Nanomaterials used for cathode modification in MFC and their intrinsic properties 6.4.8 Nanomaterials used for membrane modification and their intrinsic properties 6.5 Outlook and future perspective References Chapter 7 Advanced nanocomposite material for wastewater treatment in microbial fuel cells 7.1 Introduction 7.2 Microbial fuel cell \(MFC\) as an emerging source of energy 7.3 Role of nanocomposite materials in MFCs 7.3.1 Proton exchange membranes based on nanocomposites 7.3.2 Nanocomposite materials for electrode fabrication 7.3.3 Application of MFCs in domestic and industrial wastewater treatment 7.4 Conclusions and future prospects Acknowledgment References Chapter 8 Nanostructured electrode materials in bioelectrocommunication systems 8.1 Introduction 8.2 Theory background 8.2.1 Nanostructure 8.3 Bioelectrochemical system 8.3.1 Bioelectrochemical systems: how they work 8.3.2 Extracellular electron transfer \(EET\) 8.4 Bioelectrochemical fuel cell 8.4.1 Electron transfer for MFC 8.4.2 Healthcare applications with bioelectrochemical systems 8.4.3 POC sensing systems 8.4.4 Wearable electrochemical sensing systems 8.5 Conclusion and future perspectives References Chapter 9 Nanomaterials supporting biotic processes in bioelectrochemical systems 9.1 Introduction 9.2 Nanomaterials used in biocell 9.2.1 Carbon nanotubes 9.2.2 Gold nanoparticles 9.2.3 Silver nanoparticles 9.2.4 Zinc-modified nanoparticles in MFC activities 9.2.5 Others 9.3 Toxicity of NPs and toxicity reduction by NPs in MFC 9.4 Conclusions References Chapter 10 Nanomaterials supporting direct electron transport 10.1 Introduction 10.2 Mechanism of electron transfer-electron release 10.2.1 Mechanism of electron transfer-electron uptake 10.2.2 Role of the electrode in extracellular electron transfer 10.3 The current state of knowledge about electrode-bacteria interactions 10.3.1 Materials utilized in the cathode of the MES 10.3.2 Carbon-based cathode materials 10.3.3 Nanomodified carbon-based cathode materials 10.3.4 Photo-active semiconductors modified cathode 10.4 Conclusion and future perspectives References Chapter 11 Nanomaterials supporting oxygen reduction in bio-electrochemical systems 11.1 Introduction 11.2 Material synthesis and characterization 11.2.1 Material synthesis 11.2.2 Material characterization 11.3 Role of nanomaterials in oxygen reduction in bio-electrochemical systems 11.3.1 Carbon-based nanomaterial catalyst 11.3.2 Metal^^e2^^80^^93carbon-based nanomaterial catalyst 11.3.3 Polymer-based nanomaterial catalyst 11.3.4 Metal/polymer/carbon-based nanomaterial composite catalyst 11.4 Chemical kinetics reaction mechanisms 11.5 Outlook and challenges References Chapter 12 Nanomaterials for ion-exchange membranes 12.1 Introduction 12.2 Ion exchange membranes \(IEMs\) 12.2.1 Types of IEMs 12.2.2 Fundamental properties of IEMs 12.3 Nanomaterials for IEMs 12.3.1 Use of nanomaterials in IEMs 12.4 Methods available for nanomaterials incorporation in IEMs 12.4.1 Solution blending 12.4.2 In situ polymerization 12.4.3 Melt mixing 12.4.4 In situ sol-gel 12.5 Nanomaterials used in IEMs 12.5.1 Carbon-based nanomaterials in IEMs 12.5.2 Graphene and its varieties in IEMs 12.5.3 Oxide-based nanomaterials in IEMs 12.5.4 Metal nanoparticle-based IEMs 12.6 Factors affecting the performance of nanomaterial incorporated IEMs 12.7 Applications of nanomaterial incorporated IEMs 12.8 Advantages and disadvantages of nanomaterial incorporated IEMs 12.9 Conclusion and future scopes References Chapter 13 Nanomaterials supporting indirect electron transport 13.1 Introduction 13.2 Nanomaterials supporting indirect electron transport in bioelectrochemical system 13.2.1 Nanomaterials as electron shuttles or redox mediators to facilitate indirect electron transport 13.2.2 Anode modification with nanomaterials to support indirect electron transport 13.3 Nanomaterials role in indirect electron transport in azo dyes reduction 13.3.1 Nanomaterials role in indirect electron transport in bioelectrochemical biosensor 13.3.2 Nanomaterials facilitate indirect electron transport for power or bioelectricity generation 13.4 Conclusions References Chapter 14 Techno-economic analysis of microbial fuel cells using different nanomaterials 14.1 Introduction 14.1.1 MFCs into electricity generation 14.1.2 Direct electron transfer mechanism 14.2 Microbial fuel cells and energy 14.3 Circular bioeconomy of MFCs 14.4 Techno-economic assessment of MFCs 14.5 Performance of MFCs 14.6 Use of nanomaterials in MFCs 14.7 Market survey of nanomaterials 14.8 Life cycle assessment \(LCA\) of MFCs 14.9 Nanomaterials reusability 14.10 Conclusions References Chapter 15 Synthesis and application of carbon-based nanomaterials for bioelectrochemical systems 15.1 Introduction 15.2 Carbon-based nanomaterials and synthesis methods 15.2.1 Graphene-based NMs 15.3 Application of carbon-based nanomaterials in bioelectrochemical systems 15.3.1 Main principles of the bioelectrochemical systems 15.3.2 Microbial fuel cells 15.3.3 Electrode material selection 15.4 Graphene-based nanomaterials as the anode electrode 15.4.1 Physical amendment of graphene-based electrodes 15.4.2 Graphene modified anode with utilizing the conductive polymers 15.4.3 Graphene-modified anode composite with metal oxide 15.4.4 The principles behind the cathodic electrode side 15.4.5 Graphene-based cathode electrode for MFCs 15.5 Microbial electrolysis cells 15.5.1 The basic mechanism of microbial electrolysis cells 15.5.2 Graphene-based cathodic electrodes in value-added product 15.6 Conclusions and future perspectives References Chapter 16 Synthesis and application of graphene-based nanomaterials for microbial fuel cells 16.1 Introduction 16.2 Materials for anode 16.3 Materials for cathode 16.4 Synthesis and application of graphene-based nanomaterials for microbial fuel cells 16.4.1 Introduction to graphene oxide 16.4.2 Synthesis method of graphene oxide 16.4.3 Synthesis of metal oxides with graphene oxide 16.5 Conclusion and future outlook References Chapter 17 Future development, prospects, and challenges in application of nanomaterials and nanocomposites 17.1 Introduction 17.2 Future developments 17.2.1 Electrode 17.2.2 Carbon-based nanomaterial 17.2.3 Metal-based nanomaterial 17.2.4 Nanocomposite material 17.2.5 Membrane 17.2.6 Metal organic frameworks 17.3 Perspectives 17.3.1 Research 17.3.2 Performance of MFCs 17.3.3 Scale up 17.4 Outlook and challenges References Index