ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems

دانلود کتاب نانومواد و نانوکامپوزیت های پیشرفته برای سیستم های بیوالکتروشیمیایی

Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems

مشخصات کتاب

Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems

ویرایش:  
نویسندگان: , , ,   
سری: Micro and Nano Technologies 
ISBN (شابک) : 9780323904049 
ناشر: Elsevier 
سال نشر: 2023 
تعداد صفحات: 419
[420] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 30 Mb 

قیمت کتاب (تومان) : 41,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد و نانوکامپوزیت های پیشرفته برای سیستم های بیوالکتروشیمیایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half title
Title
Copyright
Contributors
Contents
Dedication
Preface
Foreword
About the editors
Acknowledgments
Chapter 1 Introduction to the microbial electrochemical system
	1.1 Electrochemical cells and bioelectrochemical systems \(BESs\)
		1.1.1 Historical development of BESs
	1.2 Biological fundamentals of BESs
	1.3 Electroactive biofilm
	1.4 Applications of BESs
	1.5 Electrodes and bioelectrodes
	1.6 Membranes
	1.7 Electrochemical cell design
	1.8 Characterization of BESs
	1.9 Conclusions and perspectives
	References
Chapter 2 Electricity generation with the use of microbial electrochemical systems
	2.1 Introduction to microbial electrochemical systems
	2.2 Electrogenic organisms
	2.3 Typical applications for microbial electrogenesis
		2.3.1 Wastewater treatment and energy generation
		2.3.2 Hydrogen generation
		2.3.3 Biosensors
	2.4 Principles of microbial electrochemical systems: fuel cells \(MFCs\) and electrolysis cells \(MECs\)
		2.4.1 Microbial fuel cell
		2.4.2 Microbial electrolysis cell
	2.5 MFC performance: operation parameters
	2.6 MFC optimization
		2.6.1 Scaling criteria
		2.6.2 MFC design: architectures and reported efficiencies
		2.6.3 State of the art in MFC scaling-up
	2.7 Challenges to improve MFC performance at real-life scale
		2.7.1 Manufacturing, cost, carbon footprint, and comparison with clean electricity technologies
	2.8 Perspectives, the future of MFCs
	2.9 Concluding remarks
	Acknowledgments
	References
Chapter 3 Overview of wastewater treatment approaches related to the microbial electrochemical system
	3.1 Introduction
	3.2 Current research on wastewater treatment techniques
	3.3 Comparison between conventional systems and microbial electrochemical systems for wastewater treatment
	3.4 Classification of microbial electrochemical systems
	3.5 Working principle and mechanism microbial electrochemical systems for wastewater treatment
	3.6 Bottlenecks and troubleshooting involved in MESs
	3.7 Conclusions and future prospects
	References
Chapter 4 Synthesis and application of nanocomposite material for microbial fuel cells
	4.1 Introduction
	4.2 Synthesis of nanocomposite materials used in microbial fuel cells
		4.2.1 Hydrothermal synthesis of nanocomposites
		4.2.2 Sol-gel
		4.2.3 Chemical reduction
		4.2.4 Microwaves
		4.2.5 Sonochemistry
		4.2.6 Synthesis for polymers
	4.3 Characterization of nanocomposites materials used as electrodes in microbial fuel cells
		4.3.1 Structural characterization
		4.3.2 Electrochemical characterization of nanomaterials
		4.3.3 Evaluation of nanomaterials in microbial fuel cells
	4.4 Nanoparticles-based electrodes
		4.4.1 Anodes
		4.4.2 Cathodes
	4.5 Performance of nanomaterials in anodes and cathodes
	4.6 Conclusions
	References
Chapter 5 Classification of nanomaterials and nanocomposites for anode material
	5.1 Introduction
	5.2 Carbon-based nanomaterials and nanocomposites
		5.2.1 Carbon nanotubes
		5.2.2 Graphene and graphene oxide
		5.2.3 Other carbonaceous nanomaterials and nanocomposites
	5.3 Transition metal and/or transition metal oxide decorated carbonaceous anode
		5.3.1 Transition metal modified carbonaceous anodes or transition metal/carbon nanocomposites
		5.3.2 Transition metal oxide decorated carbonaceous anodes or transition metal oxide/carbon nanocomposites
		5.3.3 Transition metal and transition metal oxide comodified carbonaceous anodes
	5.4 Conductive polymers improved carbonaceous nanocomposites
	5.5 Other nanocomposites \(transition metal/transition metal oxide/polymer/carbon/transition metal carbide, etc.\)
	5.6 Other nanomaterials or nanostructure for improving anode performances
	5.7 Future challenge of nanomaterial/nanocomposite material
	5.8 Conclusions
	References
Chapter 6 Properties of nanomaterials for microbial fuel cell application
	6.1 Bioelectrochemical energy generation systems principle and types
	6.2 Components of MFC
	6.3 Properties of vital components and their intrinsic factors to enhance electricity output
		6.3.1 Microorganisms
		6.3.2 Biofilm
		6.3.3 Electrode
		6.3.4 Electron transport mechanisms between microorganisms and an electrode
		6.3.5 Membranes
		6.3.6 Ion exchange capacity \(IEC\)
		6.3.7 Oxygen permeability
		6.3.8 Membrane conductivity
	6.4 Different types of nanomaterials in MFC
		6.4.1 Nanomaterials used for anode modification and their intrinsic properties
		6.4.2 Carbon materials
		6.4.3 Metal nanoparticles
		6.4.4 Transition metal-based nanoparticles \(metal sulfide, metal oxide, metal carbide\)
		6.4.5 Polymers
		6.4.6 Polyelectrolyte modified NMs
		6.4.7 Nanomaterials used for cathode modification in MFC and their intrinsic properties
		6.4.8 Nanomaterials used for membrane modification and their intrinsic properties
	6.5 Outlook and future perspective
	References
Chapter 7 Advanced nanocomposite material for wastewater treatment in microbial fuel cells
	7.1 Introduction
	7.2 Microbial fuel cell \(MFC\) as an emerging source of energy
	7.3 Role of nanocomposite materials in MFCs
		7.3.1 Proton exchange membranes based on nanocomposites
		7.3.2 Nanocomposite materials for electrode fabrication
		7.3.3 Application of MFCs in domestic and industrial wastewater treatment
	7.4 Conclusions and future prospects
	Acknowledgment
	References
Chapter 8 Nanostructured electrode materials in bioelectrocommunication systems
	8.1 Introduction
	8.2 Theory background
		8.2.1 Nanostructure
	8.3 Bioelectrochemical system
		8.3.1 Bioelectrochemical systems: how they work
		8.3.2 Extracellular electron transfer \(EET\)
	8.4 Bioelectrochemical fuel cell
		8.4.1 Electron transfer for MFC
		8.4.2 Healthcare applications with bioelectrochemical systems
		8.4.3 POC sensing systems
		8.4.4 Wearable electrochemical sensing systems
	8.5 Conclusion and future perspectives
	References
Chapter 9 Nanomaterials supporting biotic processes in bioelectrochemical systems
	9.1 Introduction
	9.2 Nanomaterials used in biocell
		9.2.1 Carbon nanotubes
		9.2.2 Gold nanoparticles
		9.2.3 Silver nanoparticles
		9.2.4 Zinc-modified nanoparticles in MFC activities
		9.2.5 Others
	9.3 Toxicity of NPs and toxicity reduction by NPs in MFC
	9.4 Conclusions
	References
Chapter 10 Nanomaterials supporting direct electron transport
	10.1 Introduction
	10.2 Mechanism of electron transfer-electron release
		10.2.1 Mechanism of electron transfer-electron uptake
		10.2.2 Role of the electrode in extracellular electron transfer
	10.3 The current state of knowledge about electrode-bacteria interactions
		10.3.1 Materials utilized in the cathode of the MES
		10.3.2 Carbon-based cathode materials
		10.3.3 Nanomodified carbon-based cathode materials
		10.3.4 Photo-active semiconductors modified cathode
	10.4 Conclusion and future perspectives
	References
Chapter 11 Nanomaterials supporting oxygen reduction in bio-electrochemical systems
	11.1 Introduction
	11.2 Material synthesis and characterization
		11.2.1 Material synthesis
		11.2.2 Material characterization
	11.3 Role of nanomaterials in oxygen reduction in bio-electrochemical systems
		11.3.1 Carbon-based nanomaterial catalyst
		11.3.2 Metal^^e2^^80^^93carbon-based nanomaterial catalyst
		11.3.3 Polymer-based nanomaterial catalyst
		11.3.4 Metal/polymer/carbon-based nanomaterial composite catalyst
	11.4 Chemical kinetics reaction mechanisms
	11.5 Outlook and challenges
	References
Chapter 12 Nanomaterials for ion-exchange membranes
	12.1 Introduction
	12.2 Ion exchange membranes \(IEMs\)
		12.2.1 Types of IEMs
		12.2.2 Fundamental properties of IEMs
	12.3 Nanomaterials for IEMs
		12.3.1 Use of nanomaterials in IEMs
	12.4 Methods available for nanomaterials incorporation in IEMs
		12.4.1 Solution blending
		12.4.2 In situ polymerization
		12.4.3 Melt mixing
		12.4.4 In situ sol-gel
	12.5 Nanomaterials used in IEMs
		12.5.1 Carbon-based nanomaterials in IEMs
		12.5.2 Graphene and its varieties in IEMs
		12.5.3 Oxide-based nanomaterials in IEMs
		12.5.4 Metal nanoparticle-based IEMs
	12.6 Factors affecting the performance of nanomaterial incorporated IEMs
	12.7 Applications of nanomaterial incorporated IEMs
	12.8 Advantages and disadvantages of nanomaterial incorporated IEMs
	12.9 Conclusion and future scopes
	References
Chapter 13 Nanomaterials supporting indirect electron transport
	13.1 Introduction
	13.2 Nanomaterials supporting indirect electron transport in bioelectrochemical system
		13.2.1 Nanomaterials as electron shuttles or redox mediators to facilitate indirect electron transport
		13.2.2 Anode modification with nanomaterials to support indirect electron transport
	13.3 Nanomaterials role in indirect electron transport in azo dyes reduction
		13.3.1 Nanomaterials role in indirect electron transport in bioelectrochemical biosensor
		13.3.2 Nanomaterials facilitate indirect electron transport for power or bioelectricity generation
	13.4 Conclusions
	References
Chapter 14 Techno-economic analysis of microbial fuel cells using different nanomaterials
	14.1 Introduction
		14.1.1 MFCs into electricity generation
		14.1.2 Direct electron transfer mechanism
	14.2 Microbial fuel cells and energy
	14.3 Circular bioeconomy of MFCs
	14.4 Techno-economic assessment of MFCs
	14.5 Performance of MFCs
	14.6 Use of nanomaterials in MFCs
	14.7 Market survey of nanomaterials
	14.8 Life cycle assessment \(LCA\) of MFCs
	14.9 Nanomaterials reusability
	14.10 Conclusions
	References
Chapter 15 Synthesis and application of carbon-based nanomaterials for bioelectrochemical systems
	15.1 Introduction
	15.2 Carbon-based nanomaterials and synthesis methods
		15.2.1 Graphene-based NMs
	15.3 Application of carbon-based nanomaterials in bioelectrochemical systems
		15.3.1 Main principles of the bioelectrochemical systems
		15.3.2 Microbial fuel cells
		15.3.3 Electrode material selection
	15.4 Graphene-based nanomaterials as the anode electrode
		15.4.1 Physical amendment of graphene-based electrodes
		15.4.2 Graphene modified anode with utilizing the conductive polymers
		15.4.3 Graphene-modified anode composite with metal oxide
		15.4.4 The principles behind the cathodic electrode side
		15.4.5 Graphene-based cathode electrode for MFCs
	15.5 Microbial electrolysis cells
		15.5.1 The basic mechanism of microbial electrolysis cells
		15.5.2 Graphene-based cathodic electrodes in value-added product
	15.6 Conclusions and future perspectives
	References
Chapter 16 Synthesis and application of graphene-based nanomaterials for microbial fuel cells
	16.1 Introduction
	16.2 Materials for anode
	16.3 Materials for cathode
	16.4 Synthesis and application of graphene-based nanomaterials for microbial fuel cells
		16.4.1 Introduction to graphene oxide
		16.4.2 Synthesis method of graphene oxide
		16.4.3 Synthesis of metal oxides with graphene oxide
	16.5 Conclusion and future outlook
	References
Chapter 17 Future development, prospects, and challenges in application of nanomaterials and nanocomposites
	17.1 Introduction
	17.2 Future developments
		17.2.1 Electrode
		17.2.2 Carbon-based nanomaterial
		17.2.3 Metal-based nanomaterial
		17.2.4 Nanocomposite material
		17.2.5 Membrane
		17.2.6 Metal organic frameworks
	17.3 Perspectives
		17.3.1 Research
		17.3.2 Performance of MFCs
		17.3.3 Scale up
	17.4 Outlook and challenges
	References
Index




نظرات کاربران