دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Raju Khan, Chetna Dhand, Sunil Kumar Sanghi, D. Shabi Thankaraj Salammal, Ashtbhuja Prasad Mishra سری: ISBN (شابک) : 0367461609, 9780367461607 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 415 [417] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 85 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced Microfluidics Based Point-of-Care Diagnostics: A Bridge Between Microfluidics and Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تشخیص نقطه مراقبت مبتنی بر میکروسیالات پیشرفته: پلی بین میکروفلوئیدیک و کاربردهای زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک نمای کلی متمرکز و جامع از فناوری های جدید درگیر در تشخیص مبتنی بر میکروسیالات پیشرفته از طریق انواع مختلف نشانگرهای زیستی پیش آگهی و تشخیصی ارائه می دهد. این نویسندگان تشخیص مبتنی بر میکروسیال را در زمینه زیست پزشکی به عنوان یک زمینه آتی با کاربردهای گسترده بررسی می کنند. این یک رویکرد منحصر به فرد و یک مرور کلی فناوری برای مدیریت تشخیص در مراحل اولیه بیوانالیت های مختلف از طریق تشخیص سرطان دیابت، بیماری آلزایمر، سمیت در محصولات غذایی، بیماری های مغز و شبکیه، بیماری های قلبی عروقی و عفونت های باکتریایی و غیره ارائه می دهد. بنابراین، این کتاب شامل می شود. رویکرد ترکیبی علوم پزشکی، مهندسی و فناوری زیست پزشکی نویسندگان یک نمای کلی متمرکز و جامع از فناوری های جدید درگیر در تشخیص مبتنی بر میکروسیالات پیشرفته از طریق انواع مختلف نشانگرهای زیستی پیش آگهی و تشخیصی ارائه می دهند. علاوه بر این، این کتاب حاوی توضیحات مفصلی در مورد تشخیص تکنیک های جدید است. این کتاب به عنوان راهنمای دانشآموزان، دانشمندان، محققان و فناوریهای مراقبت مبتنی بر میکروسیال از طریق تشخیص هوشمند و برنامهریزی تحقیقات آینده در این زمینه ارزشمند است.
This book provides a well-focused and comprehensive overview of novel technologies involved in advanced microfluidics based diagnosis via various types of prognostic and diagnostic biomarkers. This authors examine microfluidics based diagnosis in the biomedical field as an upcoming field with extensive applications. It provides a unique approach and comprehensive technology overview for diagnosis management towards early stages of various bioanalytes via cancer diagnostics diabetes, alzheimer disease, toxicity in food products, brain and retinal diseases, cardiovascular diseases, and bacterial infections etc. Thus, this book would encompass a combinatorial approach of medical science, engineering and biomedical technology. The authors provide a well-focused and comprehensive overview of novel technologies involved in advanced microfluidics based diagnosis via various types of prognostic and diagnostic biomarkers. Moreover, this book contains detailed description on the diagnosis of novel techniques. This book would serve as a guide for students, scientists, researchers, and microfluidics based point of care technologies via smart diagnostics and to plan future research in this valuable field.
Cover Half Title Title Page Copyright Page Table of Contents Editor Biographies List of Contributors Chapter 1 The Basic Concept for Microfluidics-Based Devices List of Abbreviations 1.1 What is Microfluidics? 1.1.1 Evolution of Microfluidics 1.1.2 Importance of Microfluidics 1.1.3 Applications of Microfluidics 1.2 Scaling Laws and Governing Equations 1.2.1 Correlation of Physical Quantities with Length Scale in Microfluidics 1.2.2 Scaling of Dimensionless Numbers in Microfluidics with Length Scale (L) 1.2.2.1 Reynolds Number 1.2.2.2 Knudsen Number 1.2.2.3 Weber Number 1.2.2.4 Froude Number 1.2.2.5 Capillary Number 1.2.2.6 Péclet Number 1.3 Types of Fluid 1.4 Types of Fluid Flow 1.5 Role of Mechanical Parameters in the Fluid Flow 1.5.1 Shear 1.5.2 Viscosity 1.5.2.1 Absolute Viscosity 1.5.2.2 Kinematic Viscosity 1.5.3 Surface Tension 1.6 Interface, Surface Tension, and Capillary Action 1.6.1 Laplace’s Law 1.6.2 Measurement of Surface Tension 1.6.3 Parameters Affecting Surface Tension 1.6.3.1 Temperature 1.6.3.2 Chemical Addition 1.6.3.3 Oxidation 1.6.4 Contact Angle, Drop Thickness, and Wettability 1.6.4.1 Thermodynamics and Force Balance 1.6.5 Nature-Inspired Phenomenon 1.6.5.1 Young’s Model 1.6.5.2 Wenzel’s Model 1.6.5.3 Cassie–Baxter model 1.7 Newton’s Second Law vs the Navier–Stokes Equation 1.8 Mixing Inside a Microchannel 1.8.1 Mechanism of Mixing in Macroscale and Microscale 1.8.1.1 Macromixing 1.8.1.2 Mesomixing 1.8.1.3 Micromixing 1.8.2 Types of Mixing: Passive and Active Mixing 1.8.3 Brownian Motion, Taylor Dispersion, and Chaotic Advection 1.8.3.1 Brownian Motion or Diffusive Transport 1.8.3.2 Taylor Dispersion 1.8.3.3 Chaotic Advection 1.8.4 Diffusion: Molecular Diffusion, Eddy Diffusion, and Bulk Diffusion 1.8.4.1 Molecular Diffusion 1.8.4.2 Eddy Diffusion 1.8.4.3 Bulk Diffusion 1.8.5 Role of Channel Architecture and Physical Forces 1.8.5.1 Split and Recombine 1.8.5.2 Ridges, Grooves, or Slanted walls 1.8.5.3 Multiphase Mixing 1.8.5.4 Microstirrers 1.8.5.5 Acoustic Mixing 1.9 Summary of Materials and Fabrication Techniques for Microfluidics Devices 1.10 Conclusion References Chapter 2 Role of Microfluidics-Based Point-of-Care Testing (POCT) for Clinical Applications 2.1 Introduction 2.2 Impact of Microfluidic-Based POCT in Resource-Limited Settings 2.3 Clinical Applications Using Microfluidics-Based Devices for POCT 2.3.1 Glucose Monitoring for Diagnosis of Diabetes 2.3.2 Cardiac Disease-Associated Marker Detection 2.3.3 Infectious Diseases 2.3.4 COVID-19 POC Diagnostics 2.3.5 Tuberculosis (TB) POC Diagnostics 2.3.6 Human Immunodeficiency Virus (HIV) POC Diagnostics 2.3.7 Malaria POC Diagnostics 2.3.8 Sepsis POC Diagnostics 2.3.9 Other Infectious Diseases (SARS, Dengue, Tuberculosis) POC Diagnostics 2.3.10 Cholesterol Monitoring 2.3.11 Pregnancy and Infertility Testing 2.3.12 Hematological and Blood Gas Testing 2.3.13 Other POCT Devices 2.4 Limitations of Conventional POC Diagnostic 2.5 Current Trends, Future Prospects, and Concluding Remarks Acknowledgments References Chapter 3 Microfluidic Paper-Based Analytical Devices for Glucose Detection List of Abbreviations 3.1 Paper-Based Microfluidic Devices: An Introduction 3.2 Fabrication Methods 3.2.1 Lithography 3.2.1.1 Basic Principle 3.2.2 Wax Printing 3.2.2.1 Basic Principle 3.2.3 Inkjet Printing 3.2.3.1 Basic Principle 3.2.3.2 Continuous Inkjet (CIJ) Printing 3.2.3.3 Drop-On-Demand (DOD) Inkjet Printing 3.2.4 Role of Semiconductor Oxides for the Fabrication of Microchannels 3.2.5 Other Methodologies 3.2.5.1 Plasma Treatment 3.2.5.2 Spray Drying 3.2.5.3 3D Printing 3.3 Surface Modification and Characterization 3.3.1 Surface Functionalization 3.3.1.1 Sol–Gel Coatings Method 3.3.1.2 Modification Using Surfactant 3.3.1.3 Grafting Polymer Method 3.3.1.4 Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) 3.3.2 Characterization 3.3.2.1 Drop Shape Analysis (DSA) 3.3.2.2 Scanning Electron Microscopy (SEM) 3.3.2.3 Energy Dispersive X-Ray (EDX) Microanalysis 3.4 Methods for the Detection of Glucose 3.4.1 Electrochemical Method 3.4.1.1 Electro-Chemiluminescence (ECL) Detection 3.4.1.2 Chemiluminescence (CL) Detection 3.4.2 Enzymatic Determination (Colorimetric Method) 3.4.2.1 Alternative Color Indicators for Glucose μPADs 3.4.2.2 Fluorescence 3.5 Color Calibration Techniques, Tools, and Methods Adopted 3.6 Conclusion References Chapter 4 Microfluidics-Based Point-of-Care Diagnostic Devices 4.1 Introduction 4.2 Point-of-Care: The Current Scenario 4.3 Components of a Generalized Microfluidic System for POC Applications 4.3.1 Flow Pumping and Control 4.3.2 Sample Preparation and Processing 4.3.3 Target Detection and Analysis 4.4 Low-Cost Paper-Based Devices 4.4.1 Blood Diagnostics 4.4.2 The Road Ahead for Paper-Based Diagnostics 4.5 Commercialization of POC Devices 4.6 Outlook and Future Perspectives References Chapter 5 Microfluidics Device for Isolation of Circulating Tumor Cells in Blood 5.1 Introduction 5.2 Metastasis and Importance of CTC Isolation 5.3 Principles of CTC Isolation from Blood 5.3.1 Passive Techniques 5.3.2 Active Techniques 5.3.3 Combined Techniques 5.4 Commercialization of Microfluidics Devices for CTC Isolation 5.5 Summary and Outlook References Chapter 6 3D-Printed Microfluidic Device with Integrated Biosensors for Biomedical Applications 6.1 Introduction 6.1.1 History of Microfluidics 6.2 3D Printing 6.2.1 Working of 3D Printer 6.2.2 3D-Printing Techniques 6.2.2.1 Role of 3D Printing in the Fabrication of Microfluidics Devices 6.3 3D Technologies 6.3.1 Stereolithography (SLA) 6.3.2 Digital Light Processing (DLP) 6.3.3 Fused Deposition Modeling (FDM) 6.3.4 Laminated Object Manufacturing (LOM) 6.3.5 Selective Laser Sintering (SLS) 6.3.6 Selective Laser Melting (SLM) 6.3.7 Direct Laser Writing (DLW) 6.3.8 PolyJet Process 6.3.9 Multi Jet Fusion (MJF) 6.4 Advantageous Features of 3D-Printed Microfluidics Devices 6.5 Biosensor 6.6 How 3D-Printed Microfluidics Devices Integrate with Biosensors 6.7 Conclusion References Chapter 7 Integrated Biosensors for Rapid and Point-of-Care Biomedical Diagnosis 7.1 Introduction 7.2 Types of Integrated Biosensor 7.2.1 Biosensors Categorized Based on the Type of Biological Recognition Element and Immobilization Technique 7.2.1.1 Enzyme-Modified Biosensor 7.2.1.2 Antibody-Modified Biosensor 7.2.1.3 Aptamer-Modified Biosensor 7.2.2 Different Biosensors Based on the Type of Transducer 7.2.2.1 Electrochemical-Modified Biosensor 7.2.2.2 Optical-Modified Biosensors 7.2.2.3 Colorimetric Biosensors 7.2.2.4 Mass Biosensors 7.2.2.5 Magnetic Biosensors 7.3 Various Integrated Biosensors for PoC Biomedical Diagnosis 7.3.1 Biosensors for POC Diagnosis of Cancer 7.3.2 Biosensors for POC Diagnosis of Diabetes 7.3.3 Biosensors for POC Diagnosis of Infectious Diseases 7.3.4 Biosensors for PoC Diagnosis of Malaria 7.3.5 Biosensors for PoC Diagnosis of Human Immunodeficiency Virus (HIV) 7.3.6 Biosensors for POC Diagnosis of Bilharzia 7.4 Conclusion References Chapter 8 Paper-Based Microfluidics Devices with Integrated Nanostructured Materials for Glucose Detection 8.1 Introduction 8.1.1 Microfluidics Paper-Based Analytical Devices (μPADs) 8.1.2 Glucose Detection Techniques 8.2 Nanostructured Electrode-Integrated μPADs for Glucose Detection 8.2.1 Carbon Nanomaterials 8.2.1.1 Carbon Nanotubes 8.2.1.2 Carbon Ink 8.2.1.3 Graphene 8.2.1.4 Graphite Ink 8.2.1.5 Graphite Pencil 8.2.2 Metal Electrodes (Au, Pt) 8.2.3 Nanowires (ZnO) 8.2.4 Nanoparticles (NPs) 8.2.5 Quantum Dots 8.3 Conclusion and Future Aspects References Chapter 9 Microfluidics Devices as Miniaturized Analytical Modules for Cancer Diagnosis 9.1 Introduction 9.2 Microfluidics Approaches for Cancer Detection 9.2.1 Cell-Affinity MicroChromatography (CAMC) 9.2.2 Immunomagnetic Separation (IMS) 9.2.3 Size-Based Cancer Cell Detection and Separation 9.2.4 On-Chip Dielectrophoresis (DEP) 9.3 Outlook for Microfluidics Approaches for Cancer Detection Acknowledgments References Chapter 10 Analytical Devices with Instrument-Free Detection Based on Paper Microfluidics 10.1 Introduction: Background 10.2 Colorimetric Measurement via Transportable Small Devices 10.2.1 Combination of Additional Cover Boxes with/without Light Sources 10.2.2 Design of Paper Devices with Pattern Recognition 10.2.3 Design of Paper Devices with Color Rescaling 10.2.4 Development of Software/Applications 10.3 Colorimetric Detection and Quantification via an Instrument-Free Readout 10.3.1 Distance-Based Method 10.3.2 Time-Based Method 10.3.3 Counting-Based Method 10.3.4 Text-Based Method 10.4 Conclusions References Chapter 11 Micromixers and Microvalves for Point-of-Care Diagnosis and Lab-on-a-Chip Applications 11.1 Micromixers for Lab-on-a-Chip Applications 11.1.1 Principle of Micromixing 11.1.2 Mixing Efficiency in Microchannels 11.1.3 Classification of Micromixers 11.1.3.1 Active Micromixers 11.1.3.2 Passive Micromixers 11.1.4 Applications of Micromixers 11.2 Microvalves for Lab-on-a-Chip Applications 11.2.1 Principle of Microvalves 11.2.2 Classification of Microvalves 11.2.2.1 Active Microvalves 11.2.2.2 Passive Microvalves 11.2.3 Applications of Microvalves 11.3 Conclusion References Chapter 12 Microfluidic Contact Lenses for Ocular Diagnostics 12.1 Introduction 12.2 Significance of Microfluidic Contact Lenses for Ocular Diagnostics 12.3 Five Methods of Manufacturing Microfluidic Contact Lenses 12.3.1 Thermoforming 12.3.2 Microlithography 12.4 Microfluidic Contact Lenses for Intraocular Pressure (IOP) Sensing 12.4.1 Microfluidic IOP Sensors 12.5 Microfluidic Contact Lenses for Glucose Sensing 12.5.1 Microfluidic Contact Lens Sensors for Multiple Targets 12.6 Microfluidic Contact Lenses for pH Sensing 12.7 Microfluidic Contact Lenses for Protein Sensing 12.8 Microfluidic Contact Lenses for Nitrite Ion Sensing 12.9 Microfluidic Contact Lens Sensor for Corneal Temperature Sensing 12.10 Conclusion and Future Prospects Acknowledgements References Chapter 13 Microfluidic Platforms for Wound Healing Analysis 13.1 Introduction 13.2 Wound Fluid Analysis – Challenges and Key Considerations 13.3 Microfluidics-Based Diagnostic Devices 13.4 Cost-Effective Paper-Based Microfluidics: New Tools for Point-of-Care Diagnostics 13.5 Parameters Assessed to Determine Wound Healing 13.5.1 Microbial Load and Activity 13.5.2 Enzymes and Their Substrates 13.5.3 Immunohistochemical Markers 13.5.4 Nitric Oxide 13.5.5 Nutritional Factors 13.5.6 pH of Wound Fluid 13.5.7 Reactive Oxygen Species 13.5.8 Temperature 13.5.9 Transepidermal Water Loss 13.5.10 C-Reactive Protein 13.5.11 Interleukin-6 13.5.12 Uric Acid 13.5.13 Glucose 13.6 Future Perspectives 13.7 Conclusion References Chapter 14 Chromatographic Separation and Visual Detection on Wicking Microfluidics Devices 14.1 Introduction 14.2 Overview 14.3 Fabrication 14.3.1 Plasma Treatment and Dot Counting 14.3.2 Chemical Vapor-Phase Deposition (CVD) Technique 14.3.3 Wax Patterning and Plotting 14.3.4 Photolithography 14.3.5 Laser Patterning Treatment 14.3.6 Plotting, Cutter, and Shaper 14.4 Applications 14.4.1 Detection of Heavy Metal 14.4.1.1 Copper 14.4.1.2 Nickel, Chromium, and Mercury 14.4.1.3 Detection of Arsenic 14.4.2 Detection of Glucose 14.4.3 Detection of Horseradish Peroxidase 14.4.4 Immunoassay 14.4.5 Detection of Hematocrit of Whole Blood 14.4.6 Detection of Sickle Cell Disease 14.4.7 Detection of Nitrite Ion and Uric Acid 14.4.8 Detection of Endocrine Disruptors 14.4.9 Detection of Hydrogen Peroxide 14.4.10 Detection of Protein, Ketone Bodies, and Nitrite 14.5 Conclusion References Chapter 15 Microfluidic Electrochemical Sensor System for Simultaneous Multi Biomarker Analyses 15.1 Introduction 15.2 Platforms for Microfluidic Electrochemical Sensor Systems and Applications 15.3 Non-Paper-Based Devices 15.3.1 Cancer 15.3.2 Cardiac Disease and Hypertension 15.3.3 Virus, DNA/RNA Sequences and Others 15.4 Paper-Based Devices 15.4.1 Hydrophobic Barrier Fabrication 15.4.2 Electrode Fabrication 15.5 Multiplexed Detection of Biomarkers in µPEDs 15.5.1 Cancer 15.5.2 Clinical Biomarkers 15.6 Conclusion and Future Scope Acknowledgment References Chapter 16 Commercialization of Microfluidic Point-of-Care Diagnostic Devices 16.1 Introduction 16.2 Fabrication of Microfluidic Device 16.3 Future Development of Microfluidics-Based Devices 16.4 Pathway to Commercialization 16.5 Microfluidics Device Market 16.6 Microfluidics-Based Point-of-Care Diagnostics 16.7 Microfluidics Device Market, Company Profiles 16.8 Overcoming Challenges to Commercialization 16.9 Concluding Remarks and Future Perspectives Acknowledgments References Index